Disclosed embodiments relate generally to sampling subterranean formation fluids and more specifically to sampling highly compressible fluids such as dry gases or ethers.
In order to successfully exploit subterranean hydrocarbon reserves, information about the subsurface formations and formation fluids intercepted by a wellbore is generally required. This information may be obtained via sampling formation fluids during various drilling and completion operations. The fluid may be collected and analyzed, for example, to ascertain the composition and producibility of hydrocarbon fluid reservoirs.
Downhole sampling tools commonly include a fluid entry port (or probe), a fluid inlet valve, and one or more sample chambers. Formation fluids may be pumped (e.g., using a reciprocating positive displacement pump) through fluid analysis instrumentation into a sample chamber. Such pumping methods work well with incompressible (or nearly incompressible) fluids such as those containing primarily liquid water and/or oil. However, when the formation fluid is highly compressible (such as with a gaseous fluid), positive displacement pumps tend to be inefficient as much of the stroke volume compresses and decompresses the gaseous fluid rather than pumping the fluid. Repeated compression and decompression may also result in irreversible changes to the formation fluid which compromises the integrity of the sample.
Gaseous formation fluids may also be dumped (or received) into a sample chamber using the formation pressure to drive the fluid into the chamber. However, such methodologies tend to significantly reduce the pressure of the sample, resulting in a low pressure, low mass sample. These methods can also cause irreversible changes to the fluid owing to expansion of the gas into the sample chamber.
Therefore there is a need in the art for improved formation fluid sampling tools and methods, particularly for obtaining samples of highly compressible fluids such as gases.
A downhole fluid sampling tool for obtaining compressible fluid samples is disclosed. Disclosed embodiments include a primary fluid flow line deployed between a fluid inlet probe and a fluid outlet line. A fluid analysis module is deployed in the primary fluid flow line. A fluid pumping module including a pump in parallel with a bypass flow line is also deployed in the primary fluid flow line. The bypass flow line includes a bypass valve. A compressible fluid sampling vessel is deployed in parallel with and in fluid communication with the primary flow line. The fluid sampling vessel includes a piston that defines a first sample chamber and a second pressure equalization chamber within the vessel.
A method for obtaining a sample of a compressible downhole fluid includes pumping downhole fluid through the fluid analysis module until a desired fluid purity or property is obtained. To obtain a sample of the fluid, the pump is turned off and the bypass valve is opened thereby enabling the downhole fluid to flow into the fluid sampling vessel. The pump may then be optionally turned back on to pressurize the sample.
The disclosed embodiments may provide various technical advantages. For example, disclosed embodiments may enable a compressible fluid to be efficiently sampled without pressure cycling as can be caused by pumping mechanisms. Moreover, by eliminating such pressure cycling the integrity of the fluid may be maintained.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
For a more complete understanding of the disclosed subject matter, and advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
During a wireline operation, for example, sampling tool 100 may be lowered into the wellbore 40. In a highly deviated borehole, the sampling tool 100 may alternatively or additionally be driven or drawn into the borehole, for example, using a downhole tractor or other conveyance means. The disclosed embodiments are not limited in this regard. For example, sampling tool 100 may also be conveyed into the borehole 40 using coiled tubing or drill pipe conveyance methodologies.
The example sampling tool 100 described herein may be used to obtain samples of compressible formation fluids, for example, those including natural gas or various gas mixtures. The sampling tool 100 may therefore include sample bottles (not shown on
The probe assembly 102 may include a probe mounted in a frame (the individual probe assembly components are not shown). The frame may be configured to extend and retract radially outward and inward with respect to the sampling tool body. Moreover, the probe may be configured to extend and retract radially outward and inward with respect to the frame. Such extension and retraction may be initiated via an uphole or downhole controller. Extension of the frame into contact with the borehole wall 42 may further support the sampling tool in the borehole as well as position the probe adjacent the borehole wall.
In some embodiments, such as those used in low permeability formations, the probe assembly 102 may be replaced by packer assembly (not shown). The disclosed embodiments are not limited in this regard. As is known to those of ordinary skill in the art, a packer assembly, when inflated, is intended to seal and/or isolate a section of the borehole wall to provide a flow area with which to induce fluid flow from the surrounding formation.
While
The probe 102 may be engaged with the borehole wall 42 as depicted so as to establish fluid communication between the subterranean formation and the primary flow line 110 (those of ordinary skill will readily appreciate that the probe may penetrate a mud cake layer on the borehole wall so as to obtain fluid directly from the formation). Examples of probes suitable for use in the in the disclosed embodiments include the Single-Probe Module or Dual-Probe Module included in the Schlumberger MDT® or described in U.S. Pat. Nos. 4,860,581 and 6,058,773, which are fully incorporated by reference herein. While not depicted it will be understood that the probe (or probes) may be coupled to a frame that may be extended and retracted relative to a tool body. In the depicted embodiment, probe 102 is an inlet probe that provides a flow channel from the subterranean formation to the primary flow line 110. Tool 100 may further include one or more outlet probes (e.g., at the downstream end of the fluid outlet line 170) so as to provide a channel through which fluid may flow from the primary flow line 110 out of the tool 100 and back into the formation. In such an embodiment, fluid may be circulated from the formation into the primary flow line 110 and back into the formation.
Fluid analysis module 104 may include substantially any suitable fluid analysis sensors and/or instrumentation, for example, including chemical sensors, optical fluid analyzers, optical spectrometers, nuclear magnetic resonance devices, a conductivity sensor, a temperature sensor, a pressure sensor. More generally, module 104 may include substantially any suitable device that yields information relating to the composition of the formation fluid such as the thermodynamic properties of the fluid, conductivity, density, viscosity, pressure, temperature, and phase composition (e.g., liquid versus gas composition or the gas content) of the fluid. While not depicted, it will be understood that fluid analysis sensors may alternatively and/or additionally be deployed on the downstream side of the fluid pumping module, for example, to sense fluid property changes that may be induced via pumping.
Fluid pumping module 120 may include substantially any suitable pump 122. For example, the pump 122 may include a reciprocating piston pump, a retractable piston pump, or a hydraulic powered pump. In the depicted embodiment pump 122 is configured in a pump-in mode, although as described in more detail below, the disclosed embodiments are no so limited.
Sample vessel 140 includes a piston 142 deployed therein that defines first and second chambers 144 and 146 within the cylindrical vessel 140. The first chamber 144 (the sample chamber) is in fluid communication with the primary flow line (when valve 138 is open) and is for housing a sample of formation fluid. The second chamber 146 (the pressure equalization chamber) may be filled with a fluid such as water, hydraulic fluid, or drilling fluid that is maintained at a desired pressure (e.g., ambient pressure or downhole hydrostatic pressure). The fluid in the second chamber 146 is displaced through a restrictor 148 into the primary flow line 110 when the first chamber 144 is filled with formation fluid.
After obtaining suitably pure formation fluid (or formation fluid having a measured property suitably close to a desired value), the pump may be shut down at 204. Valves 112 and/or 114 may also be closed as the pump is shut down. The bypass valve 125 (as well as sample vessel valves 138 and 139) may be opened at 206 enabling formation fluid to flow from the probe 102 through the bypass flow line 124 in the pumping module 120 and into the sample chamber 144. The flow of formation fluid into sample chamber 144 urges piston 142 towards the second chamber 146 (downward in the
The restrictor 148 is intended to reduce the pressure drop experienced by the formation fluid as it fills sample chamber 144. The restrictor 148 limits the rate at which the pressure equalizing fluid in chamber 146 exits the chamber and therefore also limits the rate at which formation fluid may flow into sample chamber 144. By limiting the fluid flow rates, formation fluid pressure may maintained at near formation pressure. The bypass valve may optionally be closed and the pump turned back on at 208 to pressurize the sample chamber 144 and to obtain a higher mass sample. Upon obtaining the sample, valves 138 and 139 are closed. The downhole tool may then be returned to the surface or remain downhole to perform other operations as desired.
Sampling tool 100′ may be used to obtain a formation fluid sample using method 200 depicted on
Sampling tool 100″ further includes a second sample vessel 180 configured for receiving a non-compressible fluid sample and hence may be used to obtain either or both of a compressible fluid sample (in sample vessel 140) and a non-compressible fluid sample (in sample vessel 180). Suitable sample vessels for obtaining non-compressible fluids are disclosed in U.S. Pat. No. 7,565,835, which is fully incorporated by reference herein. In the depicted embodiment, sample vessel 180 includes a piston 182 separating the vessel into first and second chambers 184 and 186. The first chamber 184 is in fluid communication with the primary flow line 110 (when valve 178 is open) and configured for receiving the fluid sample. The second chamber 186 is in fluid communication with the borehole via fluid outlet line 188 when valve 179 is open and may be filled, for example, with drilling fluid at hydrostatic pressure. The fluid in the second chamber 186 is displaced through outlet line 188 as the first chamber 184 is filled. The first chamber 184 may receive a fluid sample via opening valves 178 and 179 and pumping (via pump 122) formation fluid into the chamber from the formation through probe 102 and primary flow line 110.
Upon obtaining a suitably pure formation fluid (or formation fluid having a measured property suitably close to a desired value), the gas content of the fluid may be measured at 254. When the gas content is below a predetermined threshold, valves 112 and 114 may be closed and valves 178 and 179 opened so as to pump a substantially non-compressible fluid sample into fluid chamber 184 at 256. When the gas content is above the predetermined threshold, the pump may be shut down and valves 112 and/or 114 may be closed at 262. The bypass valve 125 (as well as sample vessel valves 138 and 139) may be opened at 264 enabling formation fluid to flow from the probe 102 through the bypass flow line 124 in the pumping module 120 and into the sample chamber 144. Pump 150 may be employed as a receiver to draw formation fluid into the sample chamber 144 for example via closing valve 117 and opening valves 124, 138, and 139. The pressure stabilizing fluid in chamber 146 may be pumped through the fluid outlet 170 to the borehole (via opening valve 114) or elsewhere in the tool.
It will be understood that disclosed sampling tools may include sampling bottles having functionality. For example, the bottles may be configured to eliminate or ‘zero’ dead volume contained therein. Dead volume is a term used to indicate the volume that exists between the seal valve at the inlet to a sample cavity, such as, for example, a sample bottle, of a sample chamber and the sample cavity itself. In operation, this volume is typically filled with a fluid, gas and/or a vacuum. Likewise, the sample chambers in the rest of the flow system are filled with a fluid, gas and/or a vacuum. However, a vacuum is undesirable in many instances because a large pressure drop may result when the seal valve is opened. Thus, many high quality samples may be taken using “low shock” techniques wherein the dead volume is almost always filled with a fluid, usually water. This fluid is often swept into and/or mixed with the formation fluid when a sample is collected, thereby contaminating the sample. Moreover, determination that a sample bottle is full may be obtained, for example, by monitoring the flowline pressure.
The sample bottles may further have self-sealing functionality. A bottle with a self-sealing mechanism prevents fluid from entering therein when a probe or other tool is detached from the downhole sampling tool. The self-sealing mechanism may be configured so as to withstand a high mud flow rate in a mud channel encountered in a wellbore.
Sampling bottles may also be nitrogen-charged. Nitrogen charging may manipulate the pressure within a sampling chamber or bottle. After the successful capture of the sample, the piston causes the sample flow line to be obstructed to seal the fluid sample inside the sample bottle. The sample is then maintained at or above reservoir pressure during retrieval by the release of a pre-set nitrogen charge. The nitrogen in the bottle may exert pressure onto the sample. The pressure is created through a floating piston acting on a buffer fluid, such as, for example, synthetic oil, thus avoiding nitrogen contamination of a sample. The recovery pressure may be set at several thousand psi (or hundred MPa) above the bubble point pressure. In the case of asphaltene studies, the recovery pressure may be set above the reservoir pressure.
Although a downhole sampling tool for obtaining a compressible fluid and certain advantages thereof have been described in detail, it should be understood that various changes, substitutions and alternations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims.
The present application claims priority to U.S. Provisional Patent Application No. 61/738,856 filed Dec. 18, 2012, the entirety of which is incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61738856 | Dec 2012 | US |