This application is directed, in general, to downhole oil tools, and more specifically, to downhole setting tools for setting frac plugs, bridge plugs, and packers for sealing well casings.
Oil and gas wells are drilled into earth formations by first creating a borehole and then running and cementing casing in the borehole. Well tools such as bridge plugs, packers, cement retainers, and frac plugs are often run into cased wells and set using setting tools powered by flammable power charges. Conventional well tools providing well casing sealing assemblies typically include a packer having one or more elastomeric sealing elements that are squeezed between a packer mandrel and the casing. They are held in place by one or more slip assemblies that are wedged between conical sleeves of the packers and the casing. The packers are configured for use as bridge plugs, tubing packers, cement retainers, and frac plugs.
During setting of a casing seal device, a shear device will be sheared to release the setting tool from the set well tool so that the setting tool may be retrieved from the well and be redressed for repeated later use. Increased expenses and delays may result if the shear device is damaged before use.
According to an illustrative embodiment, a gas-operated setting tool for use in oil wells includes a mandrel having an upper portion and lower portion and having a barrel piston having a first end and a second end. The barrel piston extends over at least a portion of the mandrel when in an in-line configuration and is releasably coupled in a relative position to the mandrel when in the in-line configuration by at least one shear screw. The mandrel has a first end on the upper portion and a second end on the lower portion. The upper portion of the mandrel proximate to the first end is formed with an exposed portion. The exposed portion of the mandrel at the first end of the mandrel extends beyond the first end of the barrel piston.
The exposed portion includes a lead portion, an engagement portion, and a wrench-application portion. The lead portion is formed closer to the first end of the mandrel than to the engagement portion and the wrench-application portion. The engagement portion includes engagement threads or engagement coupler for mating with another device and is closer to the first end of the mandrel than the wrench-application portion. A longitudinal length of the wrench-application portion is in the range of 1.5 to 3.5 inches.
According to another illustrative embodiment, a setting tool for use in wells includes a mandrel having a first end and a second end. The mandrel is formed with an interior combustion chamber. The setting tool further includes a barrel piston sized and configured to extend at least partially over an exterior of the mandrel and a shear device coupled to a portion of the mandrel and coupled to the barrel piston when in an in-line configuration. The mandrel includes an upper portion having a first end and a lower portion having a second end. The upper portion of the mandrel proximate to the first end includes a leading portion, an engagement portion, and a wrench-application portion. The wrench-application portion has a longitudinal length in the range of 1.5 to 3.0 inches.
According to an illustrative embodiment, a method of manufacturing a setting tool for use downhole includes forming a mandrel having an upper portion and lower portion. The mandrel has a first end and a second end. The method further includes forming a barrel piston sized and configured to extend over an exterior of the mandrel and forming a lead portion on the upper portion of the mandrel proximate the first end, wherein the leading portion comprises seal grooves for receiving O-rings. The method also includes forming an engagement portion on the upper portion of the mandrel adjacent to the lead portion and closer to the second end of the mandrel than the lead portion. It also includes forming a wrench-application portion on the upper portion of the mandrel adjacent to the engagement portion and closer to the second end of the mandrel than the engagement portion. The method further involves forming a retaining cap sized and configured to extend over a portion of the exterior of the mandrel, coupling the retaining cap to a first end of the barrel piston, and disposing the retaining cap and barrel piston over a portion of the exterior of the mandrel. The method also includes forming a first shear-device hole in a portion of the upper mandrel for receiving a shear device, forming a second shear-device hole through the barrel piston and in alignment with the first shear device hole when the setting tool is in an in-line configuration, and disposing a shear device in the shear-device hole. Other disclosed setting tools and methods are presented further below.
Illustrative embodiments of the present invention are described in detail below with reference to the attached drawing figures, which are incorporated by reference herein and wherein:
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the invention, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the claims.
Unless otherwise indicated, as used throughout this document, “or” does not require mutual exclusivity.
Plugs may be used in a well for many different reasons. For example, frac and bridge plugs may be used to isolate zones in a well. Plugs are typically placed in position using a setting tool. The frac plug is coupled to the setting tool and then run downhole or conveyed on wireline, coiled tubing, jointed pipe, or other conduit. The process can be involved and failures can be expensive causing considerable delay.
As a more detailed example, in the fracking process, after a horizontal well is drilled and cased, perforating guns conveyed on wire line or coiled tubing are fired in the horizontal section of the well. Once the perforated guns are fired and pulled out, the first stage is fractured. After that, it is desirable to isolate an upstream portion—above the previously perforated portion—and this is done by placing a frac plug. The frac plug with a setting tool is conveyed into the well as part of a bottom hole assembly (BHA) to the desired depth. On depth, the firing head is activated by an electrical current from a wireline truck that activates an igniter in the firing head to then cause the power charge in a setting tool to activate. That in turn motivates movement of a barrel piston or other parts that ultimately causes the frac plug to be sealed in the casing. The second zone is then treated and so forth until all the zones are perforated as desired. If the setting tool or any aspect of the BHA fails, it causes delays and increased expense. There are other examples of plugs with which the current disclosed setting tools may be used.
One persistent and serious problem has to do with attaching the setting tool to the firing head or other aspects of the bottom assembly without damaging the components of the setting tool. Illustrative embodiments of the present disclosure present a setting tool that is less prone to failure by way of increasing more reliable and consistent handling by workers in the field. Moreover, the illustrative embodiments also increase the volume of an interior combustion chamber as will be explained further below.
Referring now to the figures and initially and primarily to
Referring now primarily to
Around at least a portion of an exterior 158 of the mandrel 132 is a barrel piston 160. The barrel piston 160 has a first end 164 and a second end 168. The barrel piston 160 may be formed with one or more bleed holes, or pressure vents 170. A retaining cap or ring 172 also goes around the exterior 158 of the mandrel 132 and is coupled to the first end 164 of the barrel piston 160. For purposes of this disclosure, the retaining cap 172 may be regarded as a portion of the barrel piston 160. A first shear-device hole 176 is formed in a portion of the mandrel 132 and lines up with a second shear-device hole 180 formed in the barrel piston 160 and more precisely in the retaining cap 172. In preparing the setting tool 112, a shear device 184, e.g., shear screw 188 (set screw) or shear pin, is disposed in the first shear-device hole 176 and second shear-device hole 180 to releasably couple the barrel piston 160 and mandrel 132 and hold them 160, 132 in relative position while in the in-line configuration as shown. In some embodiments, the shear device 184 is a brass shear screw 188.
When the power charge in the combustion chamber 152 is activated, gases expand into an expansion chamber 156 (
Referring primarily to
Referring again primarily to
As shown best in
The lead portion 200 is formed with one or more seal grooves 220 for receiving O-rings 224. Two seal grooves 220 are shown with two O-rings 224. The engagement portion 204 is adjacent to the lead portion 200 and closer to the second end 144 of the mandrel 132 than the lead portion 200. The engagement portion 204 includes threads 228 for engaging with complementary threads on another tool, e.g., the firing head 108, but could include any other fastening means, e.g., click to connect, latch, bolt, screw, or any engagement coupler as those skilled in the art will appreciate. The wrench-application portion 192 is adjacent to the engagement portion 204 and closer to the second end 144 of the mandrel 132 than the engagement portion 204. A step or shoulder 232 may be formed on the mandrel 132 between the engagement portion 204 and the wrench-application portion 192.
The wrench-application portion 192 is for receiving a wrench when a field worker is applying a torque. By directing the field worker to apply the wrench on that portion, the nearby shear device 184 is protected. The wrench-application portion 192 may have any longitudinal length 216 suitable for a wrench to be applied. The wrench-application portion 192 may be formed with a knurled portion 236. The knurled portion 236 may cover all of the wrench-application portion 192 or a portion as shown in
The knurled portion 236 may have any knurled pattern, e.g., diagonal (see
In an alternative embodiment, the wrench-application portion 192 is omitted, but a steel screw or bolt is initially placed in the shear-device apertures 176, 180 that extends beyond the exterior of the setting tool to an extent that the setting tool could not go downhole with the bolt in place. The field worker uses the steel screw or bolt to apply torque. Then, once the firing head or other adjacent device is applied, the steel screw or bolt is replaced with a shear device 184.
According to an illustrative embodiment, a method of manufacturing a setting tool 112 for use downhole includes forming a mandrel 132 having an upper portion 140 and lower portion 148. The mandrel 132 has a first end 136 and a second end 144. The method further includes forming a barrel piston 160 sized and configured to extend over an exterior 158 of the mandrel 132 and forming a lead portion 200 on the upper portion 140 of the mandrel 132 proximate the first end 136. The lead portion 200 includes seal grooves 220 for receiving O-rings 224. The method also includes forming an engagement portion 204 on the upper portion 140 of the mandrel 132 adjacent to the lead portion 200 and closer to the second end 144 of the mandrel 132 than the lead portion 200. The method further includes forming a wrench-application portion 192 on the upper portion 140 of the mandrel 132 adjacent to the engagement portion 204 and closer to the second end 144 of the mandrel 132 than the engagement portion 204.
The method further involves forming a retaining cap 172 sized and configured to extend over a portion of the exterior 158 of the mandrel 132, coupling the retaining cap 172 to a first end 173 of the barrel piston 160, and disposing the retaining cap 172 and barrel piston 160 over a portion of the exterior 158 of the mandrel 132. The method also includes forming a first shear-device hole 176 in a portion of the upper portion 140 of the mandrel 132 for receiving a shear device 184, forming a second shear-device hole 180 through the barrel piston 160 (which in this context includes the retaining cap 172) and in alignment with the first shear-device hole 176 when the setting tool 112 is in an in-line configuration, and disposing a shear device 184 in the shear-device holes 176, 180.
Although the present invention and its advantages have been disclosed in the context of certain illustrative, non-limiting embodiments, it should be understood that various changes, substitutions, permutations, and alterations can be made without departing from the scope of the invention as defined by the claims. It will be appreciated that any feature that is described in connection to any one embodiment may also be applicable to any other embodiment.
Number | Name | Date | Kind |
---|---|---|---|
541699 | Stevenson | Jun 1895 | A |
1021205 | Millis | Mar 1912 | A |
1414531 | Straight | May 1922 | A |
1448112 | Gibbs | Mar 1923 | A |
1607732 | Fletcher | Nov 1926 | A |
2807325 | Webb | Sep 1957 | A |
4221549 | Rizzone | Sep 1980 | A |
5024270 | Bostick | Jun 1991 | A |
7017672 | Owen | Mar 2006 | B2 |
9810035 | Carr et al. | Nov 2017 | B1 |
20070089911 | Moyes | Apr 2007 | A1 |
20190106956 | Wells | Apr 2019 | A1 |
20200032601 | Nguyen | Jan 2020 | A1 |
20200115979 | Mickey | Apr 2020 | A1 |
20200362652 | Eitschberger | Nov 2020 | A1 |
20210340829 | Watkins | Nov 2021 | A1 |
Entry |
---|
Product Sheet for DS MicroSet, DynaEnergetics, https://www.dynaenergetics.com/-/media/Project/DMC/DynaEnergetics/Resource-Files/DS-Microset_DS-Liberator_Product-Sheets.pdf, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20230323747 A1 | Oct 2023 | US |