The present invention includes the process of separately injecting hydrogen, oxygen, and water, into an oil well, and causing the hydrogen and oxygen to react downhole, forming heat and more water. The heat produced by the reaction heats the water, thereby producing steam.
For optimum production of steam, the water should be atomized. Atomization provides the necessary surface area of the water for the absorption of heat.
In one preferred embodiment, the hydrogen, oxygen, and water are separately injected into a lateral well in a formation containing oil sands. The hydrogen and the water are supplied at the pressure in the sealed off lateral well. The oxygen is supplied at a higher pressure. This pressure difference is used to atomize the water. Stated another way, the energy for the atomizing step is provided by expanding the oxygen in the vicinity of the water.
The hydrogen used in the present invention may be pure hydrogen, or it may be part of a “reformate” mixture comprising hydrogen, carbon monoxide, carbon dioxide, and water. As used in the present specification, the term “hydrogen” is intended to include both pure hydrogen and a reformate mixture containing hydrogen.
The downhole steam generator of the present invention could receive hydrogen, oxygen, and water, in the following proportions:
When the components are provided in the above proportions, the product is steam at 500° C.
Each component is delivered downhole, in a separate conduit, each component being at a pressure which is greater than atmospheric pressure. The preferred pressures are in the range of about 10-100 atmospheres. The hydrogen and oxygen are reacted together, with or without a catalyst. When the amount of liquid water is exactly 3.7 mols, the temperature of the steam is 500° C. If this steam were generated at ground level and piped downhole, much heat would be lost. In general, the proportions of the components can be chosen to achieve a desired temperature for the steam.
Steam is the only product of the reaction between hydrogen and oxygen. There are no significant amounts of inert gases that have to be forced into the reservoir or vented to ground level.
The hydrogen may be produced at ground level by steam reforming a hydrocarbon. Oxygen of sufficient purity can be produced by pressure swing adsorption (PSA) or by a gas-separation membrane. The water injected into the reservoir should be de-ionized to prevent plugging of the formation with solid minerals.
A process and apparatus for producing the hydrogen is described in copending U.S. patent application Ser. No. 10/347,130, filed Jan. 17, 2003, and published on Feb. 5, 2004 as patent publication No. US 2004-0020125 A1. The disclosure of the latter application is hereby incorporated by reference. The apparatus disclosed in the cited application could be provided at ground level.
When hydrogen is produced at the surface using a steam reformer, as stated above, typically methane is reformed at the surface with steam, and the hot, reformed product is sent downhole directly, together with oxygen and water. The oxygen, hydrogen, and steam must be sent downhole in separate conduits.
In a typical steam reforming process, one mol of methane is reformed with 3 mols of H2O at 1000° K to produce:
The above composition, which comprises the reformate mixture, is sent downhole in its own conduit. Two mols of oxygen are sent downhole in a separate conduit. The hydrogen is oxidized to H2O and the CO is oxidized to CO2. Also, 16.9 mols of liquid water are sent downhole in a third conduit. The two mols of oxygen are delivered at a pressure sufficient to atomize the 16.9 mols of water. The final mixture will have a temperature of 500° C., as before.
An advantage of the above-described process is that the heat input to the reforming process is not wasted, i.e. it goes down the well and is used in generating steam downhole.
Concrete plug 11 helps to support the casing, and prevents water, which may be released from the surrounding formation during drilling, from filling the well.
Water enters through entry duct 21, which comprises means for introducing water into the atomizer. The water forms a thin sheet between surfaces 22 and 23, and flows radially inward when the two pieces have been screwed together. Oxygen enters through entry duct 24, which comprises means for introducing the oxygen. The oxygen flows upward through annular space 25. The upflowing oxygen atomizes the sheet of water that is emerging from the gap between surfaces 22 and 23.
Hydrogen enters through entry duct 26, and mixes with the oxygen and the atomized water in the vicinity of hole 27. The mixture is ignited in the immediate vicinity of hole 27. Thus, duct 26 comprises means for separately directing hydrogen towards the outlet hole.
The water must be atomized so that it presents the necessary surface area for heat absorption. The design of the atomizer is part of this invention. Instead of hydrogen, methane or some other fuel gas could be used here.
The sheet of water that is flowing between surfaces 22 and 23 is in laminar flow. The profile of fluid velocity across the thickness of the sheet is a parabola. That is, the fluid velocity is maximum at or near the midpoint of the gap between surfaces 22 and 23, and is a minimum immediately adjacent to each such surface. The total flow is proportional to the third power of the spacing between the surfaces. Uniform atomization requires that the spacing be constant. The present construction provides a constant spacing.
In one example, a prototype atomizer was built from tubing having an outside diameter of about 1.75 inches. That is, the outside diameter of the structure shown in
However, if the atomizer were much larger, the absolute value of the optimum size of the gap would likely be larger as well. Therefore, the invention should not be deemed limited to a particular size of gap.
The atomizer of the present invention provides its own means for experimentally determining the necessary size of the gap. One simply directs water into the entry duct 21 while screwing the lower section 31 of the atomizer into, or out of, the upper section 30. That is, the atomizer allows continuous adjustment of the size of the gap. As one makes this adjustment, the stream of water exiting hole 27 changes in character, ranging from a solid stream of water, to a series of droplets, to a mist. The presence of a mist indicates that the gap is set at the optimum size. Thus, one simply adjusts the lower section until a mist exits the atomizer, and one leaves the atomizer in this position.
The reader skilled in the art will recognize that the invention can be modified in various ways. Such modifications should be considered within the spirit and scope of the following claims.
Priority is claimed from U.S. provisional patent application Ser. No. 60/824,692, filed Sep. 6, 2006, the disclosure of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60824692 | Sep 2006 | US |