Information
-
Patent Grant
-
6719057
-
Patent Number
6,719,057
-
Date Filed
Friday, December 7, 200123 years ago
-
Date Issued
Tuesday, April 13, 200421 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Bagnell; David
- Gay; Jennifer H
Agents
-
CPC
-
US Classifications
Field of Search
US
- 166 974
- 166 951
- 166 7513
- 166 72
- 166 73
- 166 373
- 166 386
- 166 316
- 166 3321
- 166 3324
- 166 3328
- 166 664
- 166 666
- 166 665
-
International Classifications
-
Abstract
A downhole subsurface safety valve device, where an actuator is mounted on the outside of the well on the Christmas tree and the valve is operated by a mechanical transmission which may be linear (an hydraulic actuator) or rotary (an electric motor).
Description
BACKGROUND OF THE INVENTION
The invention relates to a downhole subsurface safety valve device in an oil or gas well. The invention is particularly suitable for use in subsea wells.
DESCRIPTION OF THE RELATED ART
In an oil or gas well a barrier has to be established down in the well in order to safeguard against an uncontrolled efflux of the hydrocarbons. In the production tubing, therefore, a valve is mounted which is open during normal operation, but which can be closed if it becomes necessary to open the well, for example for a workover.
Downhole safety valves are in the form either of ball valves or flap valves. They are normally hydraulically operated by means of a hydraulic line, which extends down into the well along the tubing in order to supply hydraulic fluid to a piston in a valve actuator for opening the valve. The valves are usually arranged in such a manner that they are automatically closed when there is a loss of operating fluid.
An example of such a valve is disclosed in U.S. Pat. No. 5,862,864.
Such valves are normally very reliable. One drawback, however, is that the supply line is highly vulnerable to damage, which may be incurred down in the well. The supply line is arranged along the outside of the tubing. A leakage in the supply line causes the valve to close without the possibility of opening it again. In this case the tubing has to be removed from the well, and this is a highly complicated and expensive operation.
Solutions exist for lowering an additional valve, but it needs to have a smaller through-flow opening than the old one. Another solution is to lay the supply line in a channel inside the wall of the tubing, but this makes the tubing expensive and it is difficult to screw the pipes together so that the channels are in alignment. In addition complex seals have to be established between the pipes.
A second drawback with the present valves is that they cannot be operated manually. Valves on the Christmas tree, e.g., are equipped with manual override, thus enabling the valve to be opened or closed by means of a remotely operated subsea vessel, a so-called ROV.
Thus it is an object of the invention to provide a valve that can be operated without the use of hydraulic fluid and from the outside of the well. This is achieved by means of the present invention by a valve actuator being placed in or on the Christmas tree with a mechanical connection down to the valve's kelly bushing. The mechanical connection is a member extending in the well's longitudinal direction, which can either be moved axially or rotated in order to operate the valve.
This provides a number of advantages. For example, should a fault arise in the actuator, it can easily be replaced. A second major advantage of the invention is that the actuator can be equipped with a manual override. The valve can thereby be closed by means of an ROV in the event of failure of the actuator.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a vertical section through a conventional completion illustrating a first embodiment of the invention.
FIG. 2
is a vertical section similar to that in
FIG. 1
in a horizontal Christmas tree.
FIG. 3
is a vertical section through a conventional completion illustrating a second embodiment of the invention.
FIG. 4
is a vertical section similar to that in
FIG. 3
in a horizontal Christmas tree.
FIG. 5
is a view like that in
FIG. 4
, of a ball valve.
DESCRIPTION OF THE PREFERRED EMBODIMENT
In
FIG. 1
there is illustrated a well lined with a casing
1
, which is cemented into a borehole (not shown). A wellhead
2
is mounted on top of the casing
1
. A tubing hanger
3
is secured to the wellhead, from which tubing
4
extends down into the well. The tubing defines a channel
5
for well fluids. Between the tubing and the casing
1
is an annulus
6
. In the tubing hanger
3
there is provided a first axial channel
7
in the continuation of the channel
5
and a second channel
11
.
A Christmas tree
20
is releasably attached to the top of the wellhead
2
by a standard wellhead connector
19
. In the Christmas tree there is provided a vertical channel
21
, which extends in the extension of the channel
7
and a horizontal side channel
25
, which extends from the channel
21
out through the side wall of the Christmas tree. In the vertical channel there is mounted a main valve
22
and a wing valve
23
and in the side channel
25
there is mounted a working valve
24
.
The Christmas tree in
FIGS. 1
(and
3
) is therefore a so-called conventional Christmas tree where produced well fluid flows through the channels
5
,
7
and
21
out through the top of the Christmas tree. Everything described above is part of a conventional completion of an oil or gas well and is well known to a person skilled in the art.
Into the tubing
4
is connected a valve tube piece
8
comprising a valve, which in the embodiment illustrated in
FIG. 1
is a flap valve where a valve element
9
can be rotated about a hinge
18
between a horizontal position as illustrated in
FIG. 1
where the valve is closed, and a vertical position (see
FIG. 3
) where the valve is open. A kelly bushing
10
is arranged for vertical movement, thus influencing the valve element directly for opening the valve.
A first rigid rod
12
is rigidly connected to the kelly bushing
10
of the valve
7
and extends upwardly parallel to the tubing
4
and through the channel
11
. The upper end of the rod
12
is mounted in or immediately above the top of the tubing hanger
3
. The rod
12
is located in the annulus
6
and may, for example, be slidably attached to the tubing
4
. The upper end of the rod is provided with a connector device
14
. A second rigid rod
15
is arranged in a channel or a space in the Christmas tree, which rod has at its lower end connecting bodies for releasable connection with the rod
12
. At its upper end the rod
15
is connected to a rocker
13
. A third rod
16
, which is an actuator rod in a hydraulic actuator
30
, is connected at one end to the rocker
13
and extends approximately horizontally through the wall of the Christmas tree to the outside of the Christmas tree.
The actuator
30
is bolted or attached in another manner to the outside of the Christmas tree. The actuator is of a commonly known type, comprising a housing, which defines a cylinder chamber
31
and a spring chamber
32
. A piston
33
is arranged movably inside the housing. In the spring chamber is mounted a return spring, with the result that the piston is influenced to move into a specific position if there is a loss of hydraulic drive fluid.
The piston
33
is connected to the actuator rod
16
. When the piston is influenced to move to drive position, i.e. to the left in
FIG. 1
, the rod
16
will similarly move to the left. This in turn influences the rocker element
13
, with the result that the rod
15
and thereby the rod
12
are pushed downwards, thereby influencing the kelly bushing
10
, causing it to open the valve.
This situation will last as long as the pressure on the piston is maintained. If a situation should arise where the pressure drops, the return spring will push the piston back to its original position, i.e. to the right in the drawing. This will cause the rod
12
and thereby the kelly bushing
10
to be pushed upwards, thus closing the valve.
To assist in closing the valve, the kelly bushing
10
may be in the form of a hydraulic piston. A bypass channel (not shown) in the pipe piece
8
causes the well pressure to act on the bottom of the kelly bushing. Since the valve element is located in an upwardly rising flow of hydrocarbons, it too will attempt to close the valve in the event of a loss of hydraulic drive fluid to the actuator.
The piston
33
in the actuator may comprise a screw rod
98
, which extends out past the end of the actuator housing and comprises a connector
99
for a manual override, which can be operated by an ROV. Thus the valve can still be closed by an ROV rotating the actuator into the closed position.
In
FIG. 2
a second embodiment is illustrated where the invention is employed in a horizontal Christmas tree. Identical parts have been given the same reference numerals.
The horizontal Christmas tree
40
is connected to the top of a wellhead
2
in the same way as for the conventional Christmas tree in
FIG. 1. A
tubing hanger
41
is mounted inside the Christmas tree from which the tubing
4
extends downwards in the well. A first vertical channel
45
is provided in the tubing hanger
41
, which channel is arranged in axial extension of the tubing's channel
5
. The channel
45
is normally closed at its upper end by a retractable plug (not shown), which can be removed in order to gain access to the well, for example in workover operations. A horizontal channel
42
in the tubing hanger
41
extends from the channel
45
and is connected with a channel
46
extending through the side wall of the Christmas tree. In the side channel
46
there is mounted a main valve
43
and a wing valve
44
.
Above the tubing hanger an internal plug
47
is provided in the Christmas tree, but a cap (not shown) may be used instead. The plugs form barriers during normal production, thus causing produced well fluid to flow out through the channels
42
and
46
.
In the tubing hanger there is provided a second axially extending channel
48
. In the same way as illustrated in
FIG. 1
the rod
12
extends through the channel
48
, ending in a connector
68
immediately above the upper end of the tubing hanger. A second channel
49
extends through the plug
47
to receive the actuator's
30
′ actuator rod
16
. The actuator rod is releasably connected at its lower end with the rod
12
by means of the connector
68
.
The actuator
30
′ is placed in a vertical position on the outside of the valve casing
40
as illustrated. Otherwise the actuator is identical to the previously described actuator
30
.
In
FIG. 3
a third embodiment of the invention is illustrated employed in a conventional Christmas tree. A rotating valve actuator
50
, for example an electric motor, is placed on the outside of the valve casing
20
. The actuator's driving rod is attached via a reduction gear
51
to a rod
55
extending horizontally through the wall of the valve casing to a transmission
54
, comprising two conical pinions. A second rod
53
is connected at its upper end to the gear
54
and at its lower end to a coupling
56
.
A driving rod
52
corresponding to the rod
12
in
FIG. 1
extends along the outside of the tubing
4
and through the tubing hanger's second channel
11
. At its upper end the rod has means for connection to the coupling
56
, which, for example, may be a spline coupling, which permits axial movement. The lower end of the rod
52
is connected to the valve's kelly bushing
10
, thus enabling the rod's
52
rotation to be transferred to a translatory movement of the kelly bushing
10
. The lower end of the rod may, for example, be a threaded end
58
, which is engaged with a corresponding threaded pin on the kelly bushing
10
.
When the actuator rotates the rod
55
, the rotary motion will be transferred to the rod
52
, thus enabling the valve to be opened or closed.
The motor
50
may also be a hydraulic rotary motor, which is driven by means of hydraulic fluid.
Motors of the above-mentioned type will remain in their position if the motive power disappears. The actuator will therefore not make it possible to bring the valve to closure when there is a loss of power. In order to achieve a corresponding closure-proof valve, an emergency power supply must be established, either in the form of a battery or an accumulator must be provided, which can supply power, thus enabling the valve to be closed if the power supply fails.
To assist in closing the valve its kelly bushing
10
, as described in connection with
FIG. 1
, can be equipped with a hydraulic piston driven by well fluid. If the electric power supply fails the motor can be designed to run in “neutral”, with the result that the well pressure acting on the kelly bushing's piston will be able to effect rotation of the valve's pivot so that it goes into a closed position.
The motor's
50
drive shaft
96
may be extended to the outside of the valve casing and provided with a coupling
97
for a manual override, which can be operated by an ROV. If necessary, for example in the event of motor failure, the valve can still be closed by an ROV rotating the actuator and thereby the rod
52
.
In
FIG. 4
a fourth embodiment of the invention is illustrated where a rotating actuator like that employed in
FIG. 3
is used in a horizontal Christmas tree. Identical parts have been given the same reference numerals.
The rotating valve actuator
50
′ is mounted in a vertical position and placed on the outside of the valve plug
47
(cf. FIG.
2
). The actuator's driving rod is attached via a reduction gear
51
to a rod
61
extending vertically through the channel
49
in the plug
47
and connected to the rotary coupling
56
.
The driving rod
52
extends in the same manner along the outside of the tubing
4
and through the tubing hanger's second channel
48
. In its upper end the rod has a rotary coupling
56
, which may, for example, be a spline coupling, which permits axial movement. The lower end of the rod
52
is connected to the valve's kelly bushing
10
with a pinion enabling the rod's
52
rotation to be transferred to a translatory movement of the kelly bushing
10
. The lower end of the rod may, for example, be a threaded end
58
, which is engaged with a pin on the kelly bushing
10
.
When the actuator rotates the rod
55
, the rotary motion will be transferred to the rod
52
, thus enabling the valve to be opened or closed.
In
FIG. 5
there is illustrated further embodiment where the downhole valve in valve tube piece
80
is a ball valve. Otherwise, this version corresponds to the version illustrated in
FIG. 3
or
4
and therefore details illustrated therein are not shown.
At its lower end the rod
52
is equipped with threads
58
. The ball valve
9
comprises a valve element
62
(ball) with an actuator pin
61
. The actuator pin
61
and the rod's
52
threaded end
58
form interacting parts of a gear, with the result that rotation of the rod
52
causes rotation of the pin
61
, thereby opening and closing the valve element
62
. There may also be arranged bypass channels and additional auxiliary pistons, which close the valve against the well pressure, but these are well known to a person skilled in the art and are therefore not illustrated in further detail.
Additional modifications will be natural for a person skilled in the art within the scope of the invention. For example, the valve will be able to be activated by tension in the longitudinal member, rod
12
and
52
respectively instead of compression. In that case a tension element may be used as the longitudinal member, i.e. a cable, rope, wire or likewise.
Claims
- 1. A downhole subsurface safety valve device, comprising:a valve element (8;80) inserted in a production tubing (4) in a well a distance below the well's Christmas tree (20;40), an actuator (30;30′;50;50′) for operation of the valve, and a connecting device mechanically connecting the actuator and the valve element, wherein, in that the actuator (30;30′;50) is mounted on the outside of the Christmas tree and the connecting device (12;52) is a non-hydraulic longitudinal member which extends through the tubing's pipe hanger (3;41) and along the outside of the tubing (4).
- 2. A device according to claim 1, wherein the longitudinal member (12;52) is a rod.
- 3. A device according to claim 1, wherein the actuator (30;30′) is a hydraulic actuator.
- 4. A device according to claim 3, wherein the actuator comprises a device for manual operation of the valve by an ROV.
- 5. A device according to claim 1, wherein the actuator (50;50′) is an electric actuator.
- 6. A device according to claim 5, wherein the longitudinal member is a rod (12) is connected to the actuator by a rocker (13).
- 7. A device according to claim 5, wherein the rod (12;52) is connected to the actuator by a spline connection (56).
- 8. A device according to claim 5, wherein the actuator comprises a device for manual operation of the valve by an ROV.
- 9. A device according to claim 1, wherein the actuator comprises a device for manual operation of the valve by an ROV.
- 10. A device according to claim 9, wherein the longitudinal member is a shaft (52) connected to the actuator by a rotary transmission (54).
- 11. A device according to claim 9, wherein the rod (12;52) is connected to the actuator by a spline connection (56).
- 12. A device according to claim 1, wherein the longitudinal member (12;52) is a shaft.
- 13. A downhole subsurface safety valve device, comprising:a valve element inserted, in use, in a production tubing in a well at a distance below a well Christmas tree; a rigid non-hydraulic longitudinal member connected, at a first end, to the valve element; and an actuator connected to a second end of the rigid member, the actuator being mechanically linked to the valve element via the rigid member and configured to mechanically control the valve through the mechanical connection with the rigid member, the actuator being accessible externally to the Christmas tree.
- 14. The device of claim 13, wherein,the rigid member is a rigid rod, and the valve element comprises: a flap valve; a hinge between connected to the flap valve; a kelly bushing connected to the flap valve and to the rigid rod, the flap valve movable between a closed horizontal position and an open position by the actuator mechanically causing the rigid rod to vertically move the kelly bushing.
- 15. The device of claim 13, wherein the actuator comprises a screw rod extending outside a body of the actuator and providing an external manual override operable to open and close the valve element.
- 16. The device of claim 13, wherein the actuator comprises an electric motor with a drive shaft extending outside a body of the actuator, the extending drive shaft providing an external manual override operable to open and close the valve element.
- 17. A downhole subsurface safety valve device, comprising:a valve tube piece inserted, in use, in a well production tubing at a distance below a well Christmas tree, the valve tube piece comprising a valve mechanically operable to open and close off flow through the well production tubing; an actuator, accessible externally to the Christmas tree, for opening and closing the valve; and a non-hydraulic vertical rigid member operatively connected, at a first end, to the valve and operatively connected, at a second end, to the actuator, the rigid member mechanically linking the valve and actuator.
- 18. The device of claim 17, wherein,the rigid member is a rod; and the actuator comprises a rocker arm connected to an upper end of the rod, an actuator rod connected to the rocker arm, and a means for moving the actuator rod to causing the rocker arm to move the rod to open and close the valve.
- 19. The device of claim 17, wherein,the rigid member is a rod terminating with a first pinion; and the actuator comprises an actuator rod terminating with a second pinion, the first pinion engaged with the second pinion.
- 20. The device of claim 19, wherein the actuator further comprisesa reduction gear attached to the actuator rod, and an electric motor attached to the reduction gear.
Priority Claims (1)
Number |
Date |
Country |
Kind |
20006212 |
Dec 2000 |
NO |
|
US Referenced Citations (17)
Foreign Referenced Citations (1)
Number |
Date |
Country |
2119831 |
Nov 1983 |
GB |