Downhole tool coupling system

Information

  • Patent Grant
  • 10745978
  • Patent Number
    10,745,978
  • Date Filed
    Monday, August 7, 2017
    6 years ago
  • Date Issued
    Tuesday, August 18, 2020
    3 years ago
Abstract
A downhole tool coupling system, comprising a drive stem, a sleeve, and a plurality of locking clamps. The sleeve is longitudinally movable relative to the drive stem. The locking clamps are at least partially encompassed by the sleeve. The locking clamps are adjustable between an open position and a locked position. The sleeve is oriented relative to the locking clamps to adjust the locking clamps from the open position to the locked position as the sleeve moves longitudinally from an upper position to a lower position. Each locking clamp has an interior recessed region configured to clamp the drive stem to a tool stem when in the locked position.
Description
BACKGROUND

Embodiments of the present disclosure generally relate to equipment and methods for coupling a top drive to one or more tools. The coupling may transfer both axial load and torque bi-directionally from the top drive to the one or more tools.


A wellbore is formed to access hydrocarbon-bearing formations (e.g., crude oil and/or natural gas) or for geothermal power generation by the use of drilling. Drilling is accomplished by utilizing a drill bit that is mounted on the end of a tool string. To drill within the wellbore to a predetermined depth, the tool string is often rotated by a top drive on a drilling rig. After drilling to a predetermined depth, the tool string and drill bit are removed, and a string of casing is lowered into the wellbore. Well construction and completion operations may then be conducted.


During drilling and well construction/completion, various tools are used which have to be attached to the top drive. The process of changing tools is very time consuming and dangerous, requiring personnel to work at heights. The attachments between the tools and the top drive typically include mechanical, electrical, optical, hydraulic, and/or pneumatic connections, conveying torque, load, data, signals, and/or power.


Typically, sections of a tool string are connected together with threaded connections. Such threaded connections are capable of transferring load. Right-hand (RH) threaded connections are also capable of transferring RH torque. However, application of left-hand (LH) torque to a tool string with RH threaded connections (and vice versa) risks breaking the string. Methods have been employed to obtain bi-directional torque holding capabilities for connections. Some examples of these bi-directional setting devices include thread locking mechanisms for saver subs, hydraulic locking rings, set screws, jam nuts, lock washers, keys, cross/thru-bolting, lock wires, clutches and thread locking compounds. However, these solutions have shortcomings. For example, many of the methods used to obtain bi-directional torque capabilities are limited by friction between component surfaces or compounds that typically result in a relative low torque resistant connection. Locking rings may provide only limited torque resistance, and it may be difficult to fully monitor any problem due to limited accessibility and location. For applications that require high bi-directional torque capabilities, only positive locking methods such as keys, clutches or cross/through-bolting are typically effective. Further, some high bi-directional torque connections require both turning and milling operations to manufacture, which increase the cost of the connection over just a turning operation required to manufacture a simple male-to-female threaded connection. Some high bi-directional torque connections also require significant additional components as compared to a simple male-to-female threaded connection, which adds to the cost.


Safer, faster, more reliable, and more efficient connections that are capable of conveying load, data, signals, power and/or bi-directional torque between the tool string and the top drive are needed.


SUMMARY OF THE DISCLOSURE

The present disclosure generally relates to equipment and methods for coupling a top drive to one or more tools. The coupling may transfer both axial load and torque bi-directionally from the top drive to the one or more tools.


A downhole tool coupling system comprising a drive stem, a sleeve, and a plurality of locking clamps. The sleeve is longitudinally movable relative to the drive stem. The locking clamps are at least partially encompassed by the sleeve. The locking clamps are rotatable between an open position and a locked position. The sleeve is oriented relative to the locking clamps to rotate and radially move the locking clamps from the open position to the locked position as the sleeve moves longitudinally from a first position to a second position. Each locking clamp has an interior recessed region configured to clamp the drive stem to a tool stem when in the locked position.


A downhole tool coupling system comprising a drive stem, a sleeve, and a plurality of locking clamps. The sleeve is longitudinally movable relative to the drive stem. The locking clamps are at least partially encompassed by the sleeve. The locking clamps are radially movable between an open position and a locked position. The sleeve is oriented relative to the locking clamps to radially move the locking clamps from the open position to the locked position as the sleeve moves longitudinally from a first position to a second position. Each locking clamp has an interior recessed region configured to clamp the drive stem to a tool stem when in the locked position.


A method for connecting a drive stem and a tool stem includes moving a sleeve longitudinally relative to the drive stem from a first position to a second position, moving a plurality of locking clamps radially between an open position and a locked position as the sleeve moves from the first position to the second position, the plurality of locking clamps at least partially encompassed by the sleeve, and engaging the tool stem with the plurality of locking clamps, thereby connecting the drive stem to the tool stem in the locked position.


A method for connecting a drive stem and a tool stem includes moving a sleeve longitudinally relative to the drive stem from a first position to a second position, rotating a plurality of locking clamps radially between an open position and a locked position as the sleeve moves from the first position to the second position, the plurality of locking clamps at least partially encompassed by the sleeve, and engaging the tool stem with the plurality of locking clamps, thereby connecting the drive stem to the tool stem in the locked position.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.



FIG. 1 illustrates a drilling system.



FIGS. 2A and 2B illustrate cross-sectional views of a downhole tool coupling system in a decoupled position, according to a first embodiment.



FIG. 3 illustrates a locking clamp of the downhole tool system, according to one embodiment.



FIGS. 4A and 4B illustrate a drive stem of the downhole tool system, according to one embodiment.



FIG. 5 illustrates a sleeve of the downhole tool system, according to one embodiment.



FIGS. 6A and 6B illustrate a cross-sectional view of the downhole tool system, according to one embodiment.



FIGS. 7A and 7B illustrate a cross-sectional view of the downhole tool system in an unlocked position, according to one embodiment.



FIGS. 8A and 8B illustrate a cross-sectional view of the downhole tool system in an intermediate position, according to one embodiment.



FIGS. 9A and 9B illustrate a cross-sectional view of the downhole tool system in a locked position, according to one embodiment.



FIG. 10 illustrates a cross-sectional view of a downhole tool system in a decoupled position, according to a second embodiment.



FIG. 11A illustrates a cross-sectional view of a downhole tool system in an unlocked position, according to a second embodiment.



FIG. 11B illustrates a cross-sectional view of a downhole tool system in an intermediate position, according to a second embodiment.



FIG. 12 illustrates a cross-sectional view of a downhole tool system in a locked position, according to a second embodiment.



FIGS. 13A-B illustrate a downhole tool system in a decoupled position, according to a third embodiment.



FIG. 14 illustrates a sleeve of a downhole tool system, according to a third embodiment.



FIG. 15 illustrates a locking clamp of a downhole tool system, according to a third embodiment.



FIGS. 16A and 16B illustrate a downhole tool system in an unlocked position, according to a third embodiment.



FIGS. 17A and 17B illustrate a downhole tool system in an intermediate position, according to a third embodiment.



FIGS. 18A and 18B illustrate a downhole tool system in a locked position, according to a third embodiment.





DETAILED DESCRIPTION

In the description of the representative embodiments of the invention, directional terms, such as “above”, “below”, “upper”, “lower”, etc., are used for convenience in referring to the accompanying drawings. In general, “above”, “upper”, “upward” and similar terms refer to a direction toward the earth's surface along a longitudinal axis of a wellbore, and “below”, “lower”, “downward” and similar terms refer to a direction away from the earth's surface along the longitudinal axis of the wellbore.


The present disclosure provides equipment and methods for coupling a top drive to one or more downhole tools. The downhole tool coupling system may transfer torque bi-directionally from the top drive to the one or more tools. The coupling system may provide mechanical, electrical, optical, hydraulic, and/or pneumatic connections. The coupling system may convey torque, load, data, signals, and/or power. For example, axial loads of tool strings may be expected to be several hundred tons, up to, including, and sometimes surpassing 750 tons. Required torque transmission may be tens of thousands of foot-pounds, up to, including, and sometimes surpassing 100 thousand foot-pounds. Embodiments disclosed herein may provide axial connection integrity, capable of supporting high axial loads, good sealability, resistance to bending, high flow rates, and high flow pressures.



FIG. 1 illustrates a drilling system 1, according to embodiments of the present disclosure. The drilling system 1 may include a drilling rig derrick 3d on a drilling rig floor 3f. As illustrated, drilling rig floor 3f is at the surface of a subsurface formation 7, but the drilling system 1 may also be an offshore drilling unit, having a platform or subsea wellhead in place of or in addition to rig floor 3f. The derrick may support a hoist 5, thereby supporting a top drive 4. In some embodiments, the hoist 5 may be connected to the top drive 4 by threaded couplings. The top drive 4 may be connected to a tool string 2. At various times, top drive 4 may support the axial load of tool string 2. In some embodiments, the top drive 4 may be connected to the tool string 2 by threaded couplings. The rig floor 3f may have an opening through which the tool string 2 extends downwardly into a wellbore 9. At various times, rig floor 3f may support the axial load of tool string 2. During operation, top drive 4 may provide torque to tool string 2, for example to operate a drilling bit near the bottom of the wellbore 9. The tool string 2 may include joints of drill pipe connected together, such as by threaded couplings. At various times, top drive 4 may provide right hand (RH) torque or left hand (LH) torque to tool string 2, for example to make up or break out joints of drill pipe. Power and/or signals may be communicated between top drive 4 and tool string 2. For example, pneumatic, hydraulic, electrical, optical, or other power and/or signals may be communicated between top drive 4 and tool string 2. The top drive 4 may include a control unit, a drive unit, and a tool adapter. In some embodiments, the tool adapter may utilize threaded connections. In some embodiments, the tool adapter may be a combined multi-coupler (CMC) or quick connector to support load and transfer torque with couplings to transfer power (hydraulic, electric, data, and/or pneumatic).


A downhole tool coupling system 8 is configured to connect the tool string 2 to the top drive 4 via a drive stem 6. In this manner, the top drive 4 supports the axial load of the tool string 2. The drive stem 6 may directly connect to the top drive 4, for example, by threading into a quill of the top drive. Alternatively, the drive stem 6 may indirectly connect to the top drive 4, for example, by connecting to an adaptor that directly connects to the quill of the top drive. The downhole tool coupling system 8, discussed in more detail below, provides for safer, faster, more reliable, and more efficient connections that are capable of conveying load, data, signals, power and/or bi-directional torque between the tool string and the top drive are needed.


In one embodiment of the present disclosure shown in FIGS. 2A-9B, a downhole tool coupling system 100 may include a drive stem 102, a sleeve 104 longitudinally movable relative to the drive stem 102, a plurality of locking clamps 106, an exterior housing 108, and an actuator 110. As shown in FIG. 2A, the locking clamps 106 may be partially encompassed by the sleeve 104. The locking clamps 106 may be rotatable and radially movable between an open position (shown in FIGS. 2A and 2B) and a locked position (shown in FIGS. 9A and 9B). The sleeve 104 may be oriented relative to the locking clamps 106 to rotate the locking clamps from the open position to the locked position as the sleeve moves longitudinally from an upper or first position shown in FIG. 2A to a lower or second position shown in FIG. 9A. The exterior housing 108 may encompass the sleeve 104, the actuator 110, and the locking clamps 106. The exterior housing 108 may include a protrusion 112.


Each locking clamp 106 may be substantially similar in shape. In total, the downhole tool coupling system 100 may include ten locking clamps. It is to be understood, however, that the downhole tool coupling system 100 may include more or less locking clamps than ten. As best seen in FIG. 3, each locking clamp 106 includes a recessed interior region 114 configured to clamp the drive stem 102 to a tool stem 103 when in the locked position. Each locking clamp 106 may include a lower exterior shoulder surface 116 and an upper exterior shoulder surface 118. Each locking clamp 106 may further include an upper exterior surface 120a located between the lower and upper exterior shoulder surfaces 116, 118 and a lower exterior surface 120b located below the lower exterior shoulder surface 116. The exterior surfaces 120a,b of each locking clamp 106 may have a generally convex shape. The recessed interior region 114 may include an upper edge 122 and a lower edge 124.


As best seen in FIGS. 4A and 4B, the drive stem 102 may include an upper boss 126, a notched region 128, and a plurality of shoulders 130. The upper boss 126 may be connected to the exterior housing 108 via one or more connectors (e.g., bolts, nut rings, or screws). The notched region 128 may include a lower ridge 132. The profile of the notched region 128 may be configured to enable the locking clamps 106 to rotate and radially move between the open and locked position. As seen in FIG. 2A, when in the open position, an upper face 134 of the locking clamps 106 may be substantially engaged with drive stem 102 within the notched region 128. Conversely, when in the closed position shown in FIGS. 9A and 9B, the upper face 134 of the locking clamps 106 may be spaced from the notched region 132 of the drive stem 102 except for engagement between the upper edge 122 of the locking clamps and the ridge 132. The plurality of shoulders 130 of the drive stem 102 may be located at a bottom end of the drive stem 102. The plurality of shoulders 130 may be configured to transfer torque to a tool stem 103, as discussed in more detail below.


The sleeve 104 may be longitudinally movable relative to the drive stem 102 and the exterior housing 108. As best seen in FIG. 5, a top end 134 of the sleeve 104 may have a greater cross-sectional thickness than a bottom end 136 of the sleeve. The top end 134 may have a smaller inner diameter than an inner diameter of the bottom end 136. Except for an exterior protrusion 137 for connecting the sleeve 104 to the actuator 110, the cross-sectional thickness of the sleeve 104 may uniformly decrease from the top end 134 to the bottom end 136. As a result, the inner diameter of the sleeve 104 may uniformly increase from the top end 134 to the bottom end 136. In this manner, the sleeve 104 may have a tapering cross-sectional thickness resulting in a tapered inner contour. Because of the tapering cross-sectional thickness of the sleeve 104 and the generally convex shape of the exterior surfaces 120a,b of each locking clamp 106, the sleeve 104 may engage the lower exterior shoulder surface 116 and rotate each locking clamp 106 from the open position towards the locked position as the sleeve 104 moves longitudinally from the first or upper position to the second or lower position. Similarly, the sleeve 104 may engage the upper exterior shoulder surface 118 and rotate and radially move each locking clamp 106 from the locked position towards the open position as the sleeve 104 moves longitudinally from the second or lower position to the first or upper position. A person of ordinary skill in the art will understand that the sleeve 104 may be connected to the actuator 110 by a connection other than the exterior protrusion 137.


As seen in FIGS. 2A, 6A, and 8A, the actuator 110 may be coupled to the sleeve 104 and configured to adjust the sleeve between the first or upper and second or lower positions. The actuator 110 may be powered electrically, hydraulically, or pneumatically. The actuator 110 may include an upper stop 138 and a lower stop 140. The protrusion 112 of the exterior housing 108 may be positioned between the upper and lower stops 138, 140 of the actuator 110. As seen in FIG. 2A, when the sleeve 104 is in the upper position, the protrusion 112 of the exterior housing 110 may be adjacent the lower stop 140. Conversely, as seen in FIG. 9A, when the sleeve 104 is in the lower position, the protrusion 112 of the exterior housing 110 may be adjacent the upper stop 138.


As seen in FIG. 2A, when the sleeve 104 is in the first or upper position, the upper edge 122 of each locking clamp 106 is engaged with the ridge 132 of the drive stem 102. The locking clamps 106 are in the open position, enabling the receipt of the tool stem 103 within the downhole tool coupling system 100. As seen in FIG. 2A, the tool stem 103 may include a lower boss 105, a notched region 107, and a plurality of shoulders 109. The notched region 107 of the tool stem 103 may include a ridge 111. The plurality of shoulders 109 of the tool stem 103 may be located at a top end of the tool stem. The plurality of shoulders 109 of the tool stem 103 may be configured to mate with the plurality of shoulders 130 of the drive stem 102.


While the locking clamps 106 are in the open position, the bottom surface of the shoulders 130 of the drive stem 102 are brought into engagement with the top surface of the shoulders 109 of the tool stem 103, as seen in FIGS. 6A and 6B. If necessary, the drive stem 102 may be rotated to ensure that the shoulders 130 of the drive stem become properly aligned and engaged with the shoulders of the tool stem 103, as seen in FIGS. 7A and 7B. The actuator 110 may be actuated to adjust the sleeve 104 from the upper position towards the lower position, as seen in FIGS. 8A and 8B. As the sleeve 104 adjusts from the first or upper position towards the second or lower position, a lower portion the sleeve 104 engages the lower exterior shoulder surface 116 to thereby cause the locking clamps 106 to rotate from the open position to an intermediate position, shown in FIGS. 8A and 8B. More specifically, as the sleeve 104 adjusts from the upper position towards the lower position, the upper edge 122 of each locking clamp 106 pivots about the ridge 132 of the drive stem 102 until the locking clamps 106 are substantially parallel to the drive stem 102.


After the locking clamps 106 are rotated to the intermediate position, further downward movement of the sleeve 104 to the second or lower position moves the locking clamps 106 radially inward because of the tapered inner contour of the sleeve 104 to the locked position, as can be seen in FIGS. 9A and 9B. More specifically, as the sleeve 104 adjusts from the first or upper position towards the second or lower position, each locking clamp 106 moves radially inward towards the drive stem 102 and the tool stem 103 until the lower edge 124 of each locking clamp engages the ridge 111 of the tool stem 103. The contact surface of the ridge 132 of the drive stem 102 and the contact surface of the ridge 111 of the tool stem 103 are tapered such that radial movement of the locking clamps 106 applies a preload force clamping the tool stem 103 and the drive stem 102 together. The applied preload force eliminates the tolerances and wear of the connection between the tool stem 103 and the drive stem 102 and reduces vibrations during operation of the tool. After the shoulders 130 of the drive stem 102 engage the shoulders 109 of the tool stem 103 and the tool stem 103 and the drive stem 102 are clamped together, a torque transfer path is established enabling full bi-directional torque to be applied to the tool string via the drive stem 102.


As best seen in FIGS. 2A and 2B, the downhole tool coupling system 100 may further include at least one coupling 142 for communicating signals from the top drive 4 to the tool string 2. For example, the coupling 142 may provide fluid, electrical, optical, signal, data, and/or power communication between the top drive 4 and the tool string 2. The coupling 142 may include a male coupler 142a and a female coupler 142b. The male coupler 142a may be located on one of the shoulders 130 of the drive stem 102 and the female coupler 142b may be located on one of the shoulders 109 of the tool stem 103. When the drive stem 102 and the tool stem 103 first engage each other, as shown in FIGS. 6A and 6B, the male and female couplers 142a, 142b may not properly align. However, upon rotation of the drive stem 102 and matching of the shoulders 130 of the drive stem with the shoulders 109 of the tool stem, the male coupler 142a may be received within the female coupler 142b, thereby establishing a communication link between the drive stem and the tool stem. In an alternative embodiment of the coupling not shown, the male coupler may be connected to the sleeve and the female coupler may be connected to the lower boss of the tool stem. When the sleeve is lowered from the first or upper position to the second or lower position, the male coupler is received within the female coupler. It is to be understood that the placement of the male coupler and female coupler could be swapped.


To unclamp and release the tool stem 103 from the drive stem 102, the actuator 110 can be actuated to adjust the sleeve 104 from the second or lower position to the first or upper position. As the sleeve 104 adjusts from the second or lower position towards the first or upper position, the preload force is eliminated and the locking clamps 106 move radially outward. As the sleeve 104 continues to move upward, an upper portion of the sleeve engages the upper exterior shoulder surface 118 to thereby cause the locking clamps 106 to rotate to the open position. More specifically, as the sleeve 104 adjusts from the second or lower position to the first or upper position, the upper edge 132 of each locking clamp 106 pivots about the ridge 132 of the drive stem 102 until being located in the open position, as can be seen in FIGS. 2A and 2B. In this configuration, the locking clamps 106 are no longer parallel to the drive stem 102. As the locking clamps 106 pivot about the ridge 132 of the drive stem 102, the lower edge 124 of the locking clamps disengage from the ridge 111 of the tool stem 103 such that the tool stem 203 is no longer connected to the drive stem 202 via the locking clamps 206.


After the drive stem 102 is disconnected from the tool stem 103, the drive stem 102 can be moved away from the tool stem 103 such that the shoulders 130 of the drive stem 102 are no longer adjacent the shoulders 109 of the tool stem 103, as seen in FIGS. 2A and 2B. In order to service or provide maintenance, the downhole tool coupling system 100 may then be further disassembled to remove the locking clamps 106 from the sleeve 104 and the exterior housing 108 by lifting the drive stem 102 (and thus the locking clamps 106) upward. The locking clamps 106 will be lifted upwardly with the drive stem 102 because the upper edge 122 of the locking clamps 106 are engaged with the ridge 132 of the drive stem 102. A securing element (e.g., a belt) may be used to secure the various locking clamps 106 to each other. As the locking clamps 106 move upward relative to the sleeve 104, the tapered surface of the sleeve 104 forces the locking clamps 106 to rotate to a position that enables them to be removed from the sleeve 104 and the exterior housing 110.


Another embodiment of the present disclosure is shown in FIGS. 10-12. In this embodiment, a downhole tool coupling system 200 may include a drive stem 202, a sleeve 204, a plurality of locking clamps 206, an actuator 208, and an actuator adapter 210. The drive stem 202, the sleeve 204, and the locking clamps 206 are substantially similar to the drive stem 102, sleeve 104, and locking clamps 106 discussed above for the downhole tool coupling system 100 shown in FIGS. 2-9B, with the exception that the drive stem 202 does not include an upper boss. As such, the drive stem 202, the sleeve 204, and locking clamps 206 operate in a similar manner as the operation described above to connect the drive stem to a tool stem 203.


However, unlike the embodiment shown in FIGS. 2-9B, the downhole tool coupling system 200 does not include an exterior housing surrounding the sleeve 204, the locking clamps 206, and the actuator 208. Instead, a lower end of the actuator 208 is rigidly connected to an upper end of the sleeve 204. Because of this orientation, the outer diameter of the actuator 208 for the downhole tool coupling system 200 is reduced as compared to the outer diameter of the actuator 108 for the downhole tool coupling system 100.


The actuator 208 includes a protrusion 212 located between an upper stop 214 and a lower stop 216 of the actuator adapter 210. The actuator adapter 210 is rigidly connected to the tool stem 202 such that the lower stop 216 is located above a notched region of the tool stem 202. The actuator 208 may be powered electrically, hydraulically, or pneumatically. As seen in FIG. 10, when the protrusion 212 of the actuator 208 is adjacent the upper stop 214 of the actuator adapter 210, the sleeve 204 is in the first or upper position. As seen in FIG. 12, when the protrusion 212 of the actuator 208 is adjacent the lower stop 216 of the actuator adapter 210, the sleeve is in the second or lower position.


As seen in FIG. 11A, when the sleeve 204 is in the first or upper position, an upper edge of each locking clamp 206 is engaged with a ridge of the drive stem 202. The locking clamps 206 are in the open position, enabling the receipt of the tool stem 203 within the downhole tool coupling system 200.


While the locking clamps 206 are in the open position, a bottom surface of shoulders of the drive stem 202 are brought into engagement with the top surface of shoulders of the tool stem 203, as seen in FIG. 11A. If necessary, the drive stem 202 may be rotated to ensure that the shoulders of the drive stem 202 become properly aligned and engaged with the shoulders of the tool stem 203, as seen in FIG. 11A. The actuator 210 may be actuated to adjust the sleeve 204 from the first or upper position towards the second or lower position, as seen in FIGS. 11A, 11B and 12. As the sleeve 204 adjusts from the first or upper position towards the second or lower position, a lower portion the sleeve 204 engages a lower exterior shoulder surface of the locking clamps 206 to thereby cause the locking clamps 206 to rotate from the open position to an intermediate position, shown in FIG. 11B. More specifically, as the sleeve 204 adjusts from the upper position towards the lower position, the upper edge of each locking clamp 206 pivots about the ridge of the drive stem 202 until the locking clamps 206 are substantially parallel to the drive stem 202.


After the locking clamps 206 are rotated to the intermediate position, further downward movement of the sleeve 204 to the second or lower position moves the locking clamps 206 radially inward because of the tapered inner contour of the sleeve 204 to the locked position, as can be seen in FIG. 12. More specifically, as the sleeve 204 adjusts from the first or upper position towards the second or lower position, each locking clamp 206 moves radially inward towards the drive stem 202 and the tool stem 203 until a lower edge of each locking clamp 206 engages a ridge of the tool stem 203. The contact surface of the ridge of the drive stem 202 and the contact surface of the ridge of the tool stem 203 are tapered such that radial movement of the locking clamps 206 applies a preload force clamping the tool stem 203 and the drive stem 202 together. The applied preload force eliminates the tolerances and wear of the connection between the tool stem 203 and the drive stem 202 and reduces vibrations during operation of the tool. After the shoulders of the drive stem 202 engage the shoulders of the tool stem 203 and the tool stem 203 and the drive stem 202 are clamped together, a torque transfer path is established enabling full bi-directional torque to be applied to the tool string via the drive stem 202.


To unclamp and release the tool stem 203 from the drive stem 202, the actuator 210 can be actuated to adjust the sleeve 204 from the second or lower position to the first or upper position. As the sleeve 204 adjusts from the second or lower position towards the first or upper position, the preload force is eliminated and the locking clamps 206 move radially outward. As the sleeve 204 continues to move upward, an upper portion of the sleeve engages an upper exterior shoulder surface of the locking clamps 206 to thereby cause the locking clamps 206 to rotate to the open position. More specifically, as the sleeve 204 adjusts from the second or lower position to the first or upper position, the upper edge of each locking clamp 206 pivots about the ridge of the drive stem 202 until being located in the open position, as can be seen in FIG. 11A. In this configuration, the locking clamps 206 are no longer parallel to the drive stem 202. As the locking clamps 206 pivot about the ridge of the drive stem 202, the lower edge of the locking clamps disengage from the ridge of the tool stem 203 such that the tool stem 203 is no longer connected to the drive stem 202 via the locking clamps 206.


After the drive stem 202 is disconnected from the tool stem 203, the drive stem 202 can be moved away from the tool stem 203 such that the shoulders of the drive stem 202 are no longer adjacent the shoulders of the tool stem 203, as seen in FIG. 10.


A third embodiment of the present disclosure is shown in FIGS. 13A-18B. A downhole tool coupling system 300 may include a drive stem 302, a sleeve 304, a plurality of locking clamps 306, an actuator 308, an actuator adapter 310, and a locking clamp connector 312. The actuator 308 and the actuator adapter 310 may be substantially similar to the actuator 208 and the actuator adapter 210 discussed above with regard to the second embodiment shown in FIGS. 10-12. As such, the actuator 308 and the actuator adapter 312 operate in a similar manner as the operation described above.


Unlike the previously described embodiments, as seen in FIG. 14, the cross-sectional thickness of the sleeve 304 does not decrease uniformly from an upper end 314 of the sleeve to a bottom end 316. Instead, the sleeve 304 may include an upper protrusion 318 and a lower protrusion 320. More specifically, the upper protrusion 318 may have a first tapered portion 318a and a second tapered portion 318b. The lower protrusion 320 may also have a first tapered portion 320a and a second tapered portion 320b. The first tapered portion 318a of the upper protrusion 318 is substantially similar in shape to the first tapered portion 320a of the lower protrusion 320. Similarly, the second tapered portion 318b of the upper protrusion 318 is substantially similar in shape to the second tapered portion 320b of the lower protrusion 320. The first tapered portion of the upper and lower protrusions 318a, 320a may have a greater gradient than the second tapered portion of the upper and lower protrusions 318b, 320b.


As seen in FIG. 15, the locking clamps 306 may have an upper shoulder exterior surface 322 and a lower shoulder exterior surface 324. The profile of the upper shoulder exterior surface 322 may mirror the profile of the upper protrusion 318 of the sleeve 304. Similarly, the profile of the lower shoulder exterior surface 324 of each locking clamp 306 may mirror the profile of the lower protrusion 320 of the sleeve 304. Unlike the locking clamps 106 and 206, the locking clamps 306 remain substantially parallel to the drive stem 302 when in the open position (shown in FIG. 16A) and when in the closed position (shown in FIG. 18A). Each locking clamp 306 may further include a pair of upper protrusions 326 protruding outwardly from the sidewalls of each locking clamp at the upper shoulder exterior surface 322 and a pair of lower protrusions 328 protruding outwardly from the sidewalls of each locking clamp at lower shoulder exterior surface 324.


As best seen in FIG. 14, the downhole tool coupling system 300 may further include a plurality of retainers 329 attached to an internal surface of the sleeve 304. Each retainer 329 may be located between two of the locking clamps 306 and include a pair of upper slots and a pair of lower slots. The pair of upper slots may be configured to receive the upper protrusions 326 of adjacent locking clamps and the pair of lower slots may be configured to receive the lower protrusions 328. As seen in FIG. 15, each upper and lower slot may include a first sloped portion and a second sloped portion, with the first sloped portion having a lesser gradient than the second sloped portion. The upper and lower slots may be substantially similar in shape.


In the embodiment shown in FIGS. 13A-18B, the locking clamps 306 may move radially between an open position and a locked position. When in the open position, the locking clamps 306 define a first bore diameter capable of receiving a tool stem 303, as can be seen in FIGS. 16A and 16B. When in the locked position, the locking clamps 306 move radially inward to define a second bore diameter less than the first bore diameter, as seen in FIGS. 18A and 18B.


The clamp connector 312 connects each of the plurality of locking clamps 306 to each other. The clamp connector 312 may include a groove for receiving an upper end of each locking clamp 316. The upper end of each locking clamp may be keyed to slide radially inward and outward within a corresponding groove of the clamp connector 312. As such, the clamp connector 312 may function as a guide as the locking clamps adjust radially from the open position (FIG. 16A) to the locked position (FIG. 18A).


As seen in FIGS. 16A and 16B, when the sleeve 304 is in the first or upper position, the locking clamps 306 are in the open position. Upon actuation of the actuator 308, the sleeve 304 is moved downwardly from the first or upper position towards an intermediate position, as seen in FIGS. 17A and 17B. As the sleeve 304 moves from the first or upper position towards the intermediate position and second or lower position, the upper protrusion 318 engages the profile of the upper exterior shoulder surface 322 and the lower protrusion 320 engages the profile of the lower exterior shoulder surface 324. As the first tapered portion of the upper and lower protrusions 318a, 320a of the sleeve 304 engage each locking clamp 306, the locking clamps will be moved radially inward such that an upper edge 330 of a recessed region 332 of each locking clamp 306 contacts a ridge of the drive stem 302 and a lower edge 334 of the recessed region 332 of each locking clamp 306 contacts a ridge of the tool stem 303 to connect the drive and tool stems 302, 303. When in the intermediate position, the locking clamps 306 define a third bore diameter between the first bore diameter and the second bore diameter, as seen in FIGS. 17A and 17B. The sleeve 304 continues moving downward from the intermediate position to the second or lower position, as seen in FIGS. 18A and 18B. As the second tapered portion of the upper and lower protrusions 318b, 320b of the sleeve 304 engage each locking clamp 306, a preloading force will be applied, thereby clamping the drive 302 and tool stems 303 together because of the tapered contact surface between locking clamps 306 and the ridges. The applied preload force eliminates the tolerances and wear of the connection between the tool stem 303 and the drive stem 302 and reduces vibrations during operation of the tool. While the sleeve 304 is moving from the first or upper position to the second or lower position, the upper and lower protrusions 326, 328 of each locking clamp will also move within the corresponding upper and lower slots of each retainer 329.


To release the preloading force clamping the drive and tool stems together, the actuator 310 may be actuated to move the sleeve 304 from the second or lower position to the first or upper position. Because of the upper and lower protrusions 326, 328 of each locking clamp 306 within the corresponding upper and lower slots of each retainer 329, the clamping members will move radially outward from the locked position towards the open position when the sleeve 304 moves from the second or lower position to the first or upper position.


In one or more of the embodiments described herein, a downhole tool coupling system includes a drive stem, a sleeve, and a plurality of locking clamps.


In one or more of the embodiments described herein, the sleeve is longitudinally movable relative to the drive stem.


In one or more of the embodiments described herein, the locking clamps are at least partially encompassed by the sleeve.


In one or more of the embodiments described herein, the locking clamps are rotatable between an open position and a locked position.


In one or more of the embodiments described herein, the sleeve is oriented relative to the locking clamps to rotate and radially move the locking clamps from the open position to the locked position as the sleeve moves longitudinally from a first position to a second position.


In one or more of the embodiments described herein, the locking clamps have an interior recessed region configured to clamp the drive stem to a tool stem when in the locked position.


In one or more of the embodiments described herein, the locking clamps are radially movable between an open position and a locked position.


In one or more of the embodiments described herein, the sleeve is oriented relative to the locking clamps to radially move the locking clamps from the open position to the locked position as the sleeve moves longitudinally from a first position to a second position.


In one or more of the embodiments described herein, the locking clamps are substantially similar in shape.


In one or more of the embodiments described herein, a bottom end of the drive stem comprises a plurality of shoulders configured to transfer torque to a tool stem.


In one or more of the embodiments described herein, the downhole tool includes an exterior housing.


In one or more of the embodiments described herein, the sleeve and the locking clamps are disposed within the exterior housing.


In one or more of the embodiments described herein, each locking clamp includes a lower exterior shoulder surface.


In one or more of the embodiments described herein, the sleeve is configured to engage the lower exterior shoulder surface and rotate and radially move each locking clamp from the open position to the locked position as the sleeve moves longitudinally from the upper position to the lower position.


In one or more of the embodiments described herein, each locking clamp includes an upper exterior shoulder surface.


In one or more of the embodiments described herein, the sleeve is configured to engage the upper exterior shoulder surface and rotate and radially move each locking clamp from the locked position to the open position as the sleeve moves longitudinally from the lower position to the upper position.


In one or more of the embodiments described herein, a top end of the sleeve has an inner diameter smaller than an inner diameter of a bottom end of the sleeve.


In one or more of the embodiments described herein, each locking clamp has an exterior surface located between the upper and lower exterior shoulder surfaces.


In one or more of the embodiments described herein, the exterior surface of each locking clamp has a generally convex shape.


In one or more of the embodiments described herein, the downhole tool includes an actuator configured to move the sleeve from the first position to the second position.


In one or more of the embodiments described herein, the sleeve the actuator and the locking clamps are disposed within the exterior housing.


In one or more of the embodiments described herein, the actuator has an upper stop and a lower stop and the exterior housing has a protrusion located between the upper and lower stops of the actuator.


In one or more of the embodiments described herein, the interior recessed recessed region of each locking clamp includes an upper edge and a lower edge.


In one or more of the embodiments described herein, the upper edge of each interior recessed region engages a ridge of the drive stem.


In one or more of the embodiments described herein, the interior recessed region of each locking clamp is configured to enable each locking clamp to rotate about the ridge of the drive stem when rotating and radially moving from the open position to the locked position.


In one or more of the embodiments described herein, the downhole tool includes a plurality of retainers attached to an internal surface of the sleeve.


In one or more of the embodiments described herein, each locking clamp includes a first protrusion extending from a first sidewall and a second protrusion extending from an opposing second sidewall.


In one or more of the embodiments described herein, each retainer is located between two of the plurality of locking clamps and includes at least one slot for receiving one of the protrusions of each of the adjacent locking clamps.


In one or more of the embodiments described herein, each locking clamp has a lower exterior shoulder.


In one or more of the embodiments described herein, the sleeve includes a lower protrusion configured to engage the lower exterior shoulder and radially move each locking clamp from the open position to the locked position as the sleeve moves longitudinally from the first position to the second position.


In one or more of the embodiments described herein, each locking clamp has clamp has an upper exterior shoulder.


In one or more of the embodiments described herein, the sleeve includes an upper protrusion configured to engage the upper exterior shoulder and radially move each locking clamp from the open position to the locked position as the sleeve moves longitudinally from the first position to the second position.


In one or more of the embodiments described herein, the lower exterior shoulder includes a first lower exterior shoulder surface and a second lower exterior shoulder surface.


In one or more of the embodiments described herein, the first and second lower exterior shoulder surfaces include a taper.


In one or more of the embodiments described herein, the taper of the first lower exterior shoulder surface is steeper than the taper of the second exterior shoulder surface.


In one or more of the embodiments described herein, the upper exterior shoulder includes a first upper exterior shoulder surface and a second upper exterior shoulder surface.


In one or more of the embodiments described herein, the first and second upper exterior shoulder surfaces include a taper.


In one or more of the embodiments described herein, the taper of the first upper exterior shoulder surface is steeper than the taper of the second upper exterior shoulder surface.


In one or more of the embodiments described herein, the lower protrusion of the sleeve has a surface profile mirroring a surface profile of the lower exterior shoulder and the upper protrusion of the sleeve has a surface profile mirroring a surface profile of the upper exterior shoulder.


In one or more of the embodiments described herein, the downhole tool includes an actuator adapter encompassing the drive stem.


In one or more of the embodiments described herein, the actuator adapter includes an upper stop and a lower stop.


In one or more of the embodiments described herein, an actuator has a protrusion located between the upper and lower stops of the actuator adapter.


In one or more of the embodiments described herein, a method for connecting a drive stem and a tool stem includes moving a sleeve longitudinally relative to the drive stem from a first position to a second position, moving a plurality of locking clamps radially between an open position and a locked position as the sleeve moves from the first position to the second position, the plurality of locking clamps at least partially encompassed by the sleeve, and engaging the tool stem with the plurality of locking clamps, thereby connecting the drive stem to the tool stem in the locked position.


In one or more of the embodiments described herein, a method for connecting a drive stem and a tool stem includes moving a sleeve longitudinally relative to the drive stem from a first position to a second position, rotating a plurality of locking clamps radially between an open position and a locked position as the sleeve moves from the first position to the second position, the plurality of locking clamps at least partially encompassed by the sleeve, and engaging the tool stem with the plurality of locking clamps, thereby connecting the drive stem to the tool stem in the locked position.


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A downhole tool coupling system, comprising: a drive stem having shoulders on a bottom surface of the drive stem for transferring torque;a sleeve longitudinally movable relative to the drive stem; anda plurality of locking clamps at least partially encompassed by the sleeve, the locking clamps radially moveable between an open position and a locked position and having a lower exterior shoulder and an upper exterior shoulder, the sleeve oriented relative to the locking clamps to move both exterior shoulders of the locking clamps in a radial inward direction from the open position to the locked position as the sleeve moves longitudinally from a first position to a second position, each locking clamp having an interior recessed region configured to clamp the drive stem to a tool stem when in the locked position, wherein the tool stem includes shoulders configured to mate with the shoulders of the drive stem to transfer torque therebetween.
  • 2. The downhole tool coupling system of claim 1, further comprising a plurality of retainers attached to an internal surface of the sleeve, wherein each locking clamp includes a first protrusion extending from a first sidewall and a second protrusion extending from an opposing second sidewall, each retainer located between two of the plurality of locking clamps and having at least one slot for receiving one of the protrusions of each of the adjacent locking clamps.
  • 3. The downhole tool coupling system of claim 1, wherein the sleeve having a lower protrusion configured to engage the lower exterior shoulder and radially move each locking clamp from the open position to the locked position as the sleeve moves longitudinally from the first position to the second position.
  • 4. The downhole tool coupling system of claim 3, wherein the sleeve having an upper protrusion configured to engage the upper exterior shoulder and radially move each locking clamp from the open position to the locked position as the sleeve moves longitudinally from the first position to the second position.
  • 5. The downhole tool coupling system of claim 4, wherein the lower exterior shoulder has a first lower exterior shoulder surface and a second lower exterior shoulder surface, the first and second lower exterior shoulder surfaces having a taper, the taper of the first lower exterior shoulder surface being steeper than the taper of the second lower exterior shoulder surface.
  • 6. The downhole tool coupling system of claim 5, wherein the upper exterior shoulder has a first upper exterior shoulder surface and a second upper exterior shoulder surface, the first and second upper exterior shoulder surfaces having a taper, the taper of the first upper exterior shoulder surface being steeper than the taper of the second upper exterior shoulder surface.
  • 7. The downhole tool coupling system of claim 6, wherein the lower protrusion of the sleeve has a surface profile mirroring a surface profile of the lower exterior shoulder and the upper protrusion of the sleeve has a surface profile mirroring a surface profile of the upper exterior shoulder.
  • 8. The downhole tool coupling system of claim 4, further comprising an actuator adapter encompassing the drive stem having an upper stop and a lower stop, an actuator having a protrusion located between the upper and lower stops of the actuator adapter.
  • 9. The downhole tool coupling system of claim 3, wherein the lower protrusion is engaged with the lower exterior shoulder when the locking clamp is in the open position.
  • 10. The downhole tool coupling system of claim 1, further comprising a clamp connector for connecting the plurality of locking clamps to each other.
  • 11. The downhole tool coupling system of claim 10, wherein the clamp connector includes a groove configured to guide radial movement of the plurality of clamps between the open position and the locked position.
  • 12. The downhole tool coupling system of claim 1, further comprising a plurality of retainers attached to an internal surface of the sleeve, wherein each retainer is located between two of the plurality of locking clamps.
  • 13. The downhole tool coupling system of claim 12, wherein each locking clamp includes a first protrusion extending from a first sidewall and a second protrusion extending from an opposing second sidewall, and each retainer includes at least one slot for receiving one of the protrusions of each of the adjacent locking clamps.
  • 14. A method for connecting a drive stem and a tool stem, comprising: moving a sleeve longitudinally relative to the drive stem from a first position to a second position;moving upper and lower exterior shoulders of a plurality of locking clamps radially inwardly from an open position to a locked position as the sleeve moves from the first position to the second position, the plurality of locking clamps at least partially encompassed by the sleeve;engaging the tool stem and the drive stem with the plurality of locking clamps as the upper and lower exterior shoulders move radially inwardly, thereby connecting the drive stem to the tool stem in the locked position; andtransferring torque from the drive stem to the tool stem.
  • 15. The method of claim 14, wherein moving the upper and lower exterior shoulders of a plurality of locking clamps radially inwardly comprises moving the plurality of locking clamps radially along a groove of a clamp connector connecting the plurality of locking members.
  • 16. A downhole tool coupling system, comprising: a drive stem;a sleeve longitudinally movable relative to the drive stem;a plurality of locking clamps at least partially encompassed by the sleeve, the locking clamps radially moveable between an open position and a locked position; anda plurality of retainers attached to an internal surface of the sleeve, wherein each locking clamp includes a first protrusion extending from a first sidewall and a second protrusion extending from an opposing second sidewall, each retainer located between two of the plurality of locking clamps and having at least one slot for receiving one of the protrusions of each of the adjacent locking clamps,wherein the sleeve is oriented relative to the locking clamps to radially move the locking clamps from the open position to the locked position as the sleeve moves longitudinally from a first position to a second position, each locking clamp having an interior recessed region configured to clamp the drive stem to a tool stem when in the locked position.
  • 17. The downhole tool coupling system of claim 16, wherein each locking clamp has a lower exterior shoulder, the sleeve having a lower protrusion configured to engage the lower exterior shoulder and radially move each locking clamp from the open position to the locked position as the sleeve moves longitudinally from the first position to the second position.
  • 18. The downhole tool coupling system of claim 17, wherein each locking clamp has an upper exterior shoulder, the sleeve having an upper protrusion configured to engage the upper exterior shoulder and radially move each locking clamp from the open position to the locked position as the sleeve moves longitudinally from the first position to the second position.
US Referenced Citations (356)
Number Name Date Kind
1367156 McAlvay et al. Feb 1921 A
1610977 Scott Dec 1926 A
1822444 MacClatchie Sep 1931 A
2370354 Hurst Feb 1945 A
3096999 Ahlstone Jul 1963 A
3147992 Haeber et al. Sep 1964 A
3354951 Savage et al. Nov 1967 A
3385370 Knox et al. May 1968 A
3662842 Bromell May 1972 A
3698426 Litchfield et al. Oct 1972 A
3747675 Brown Jul 1973 A
3766991 Brown Oct 1973 A
3774697 Brown Nov 1973 A
3776320 Brown Dec 1973 A
3842619 Bychurch, Sr. Oct 1974 A
3888318 Brown Jun 1975 A
3899024 Tonnelli et al. Aug 1975 A
3913687 Gyongyosi et al. Oct 1975 A
3915244 Brown Oct 1975 A
3964552 Slator Jun 1976 A
4022284 Crow May 1977 A
4051587 Boyadjieff Oct 1977 A
4100968 Delano Jul 1978 A
4192155 Gray Mar 1980 A
4199847 Owens Apr 1980 A
4235469 Denny et al. Nov 1980 A
4364407 Hilliard Dec 1982 A
4377179 Giebeler Mar 1983 A
4402239 Mooney Sep 1983 A
4433859 Driver Feb 1984 A
4449596 Boyadjieff May 1984 A
4478244 Garrett Oct 1984 A
4496172 Walker Jan 1985 A
4497224 Jürgens Feb 1985 A
4557508 Walker Dec 1985 A
4593773 Skeie Jun 1986 A
4693497 Pettus Sep 1987 A
4708376 Jennings Nov 1987 A
4762187 Haney Aug 1988 A
4776617 Sato Oct 1988 A
4779688 Baugh Oct 1988 A
4791997 Krasnov Dec 1988 A
4813493 Shaw et al. Mar 1989 A
4815546 Haney et al. Mar 1989 A
4821814 Willis et al. Apr 1989 A
4844181 Bassinger Jul 1989 A
4867236 Haney et al. Sep 1989 A
4955949 Bailey et al. Sep 1990 A
4962819 Bailey et al. Oct 1990 A
4972741 Sibille Nov 1990 A
4981180 Price Jan 1991 A
4997042 Jordan et al. Mar 1991 A
5036927 Willis Aug 1991 A
5099725 Bouligny, Jr. et al. Mar 1992 A
5152554 LaFleur et al. Oct 1992 A
5172940 Usui et al. Dec 1992 A
5191939 Stokley Mar 1993 A
5215153 Younes Jun 1993 A
5245877 Ruark Sep 1993 A
5267621 Deken Dec 1993 A
5282653 LaFleur et al. Feb 1994 A
5297833 Willis et al. Mar 1994 A
5348351 LaFleur et al. Sep 1994 A
5385514 Dawe Jan 1995 A
5433279 Tessari et al. Jul 1995 A
5441310 Barrett et al. Aug 1995 A
5456320 Baker Oct 1995 A
5479988 Appleton Jan 1996 A
5486223 Carden Jan 1996 A
5501280 Brisco Mar 1996 A
5509442 Claycomb Apr 1996 A
5577566 Albright et al. Nov 1996 A
5584343 Coone Dec 1996 A
5645131 Trevisani Jul 1997 A
5664310 Penisson Sep 1997 A
5682952 Stokley Nov 1997 A
5735348 Hawkins, III Apr 1998 A
5778742 Stuart Jul 1998 A
5839330 Stokka Nov 1998 A
5909768 Castille et al. Jun 1999 A
5918673 Hawkins et al. Jul 1999 A
5950724 Giebeler Sep 1999 A
5971079 Mullins Oct 1999 A
5992520 Schultz et al. Nov 1999 A
6003412 Dlask et al. Dec 1999 A
6053191 Hussey Apr 2000 A
6102116 Giovanni Aug 2000 A
6142545 Penman et al. Nov 2000 A
6161617 Gjedebo Dec 2000 A
6173777 Mullins Jan 2001 B1
6276450 Seneviratne Aug 2001 B1
6279654 Mosing et al. Aug 2001 B1
6289911 Majkovic Sep 2001 B1
6309002 Bouligny Oct 2001 B1
6311792 Scott et al. Nov 2001 B1
6328343 Hosie et al. Dec 2001 B1
6378630 Ritorto et al. Apr 2002 B1
6390190 Mullins May 2002 B2
6401811 Coone Jun 2002 B1
6415862 Mullins Jul 2002 B1
6431626 Bouligny Aug 2002 B1
6443241 Juhasz et al. Sep 2002 B1
6460620 LaFleur Oct 2002 B1
6527047 Pietras Mar 2003 B1
6536520 Snider et al. Mar 2003 B1
6571876 Szarka Jun 2003 B2
6578632 Mullins Jun 2003 B2
6595288 Mosing et al. Jul 2003 B2
6604578 Mullins Aug 2003 B2
6622796 Pietras Sep 2003 B1
6637526 Juhasz et al. Oct 2003 B2
6640824 Majkovic Nov 2003 B2
6666273 Laurel Dec 2003 B2
6675889 Mullins et al. Jan 2004 B1
6679333 York et al. Jan 2004 B2
6688398 Pietras Feb 2004 B2
6691801 Juhasz et al. Feb 2004 B2
6705405 Pietras Mar 2004 B1
6715542 Mullins Apr 2004 B2
6719046 Mullins Apr 2004 B2
6722425 Mullins Apr 2004 B2
6725938 Pietras Apr 2004 B1
6732819 Wenzel May 2004 B2
6732822 Slack et al. May 2004 B2
6742584 Appleton Jun 2004 B1
6742596 Haugen Jun 2004 B2
6779599 Mullins et al. Aug 2004 B2
6832656 Fournier, Jr. et al. Dec 2004 B2
6883605 Arceneaux et al. Apr 2005 B2
6892835 Shahin et al. May 2005 B2
6908121 Hirth et al. Jun 2005 B2
6925807 Jones et al. Aug 2005 B2
6938697 Haugen Sep 2005 B2
6976298 Pietras Dec 2005 B1
6994176 Shahin et al. Feb 2006 B2
7000503 Dagenais et al. Feb 2006 B2
7001065 Dishaw et al. Feb 2006 B2
7004259 Pietras Feb 2006 B2
7007753 Robichaux et al. Mar 2006 B2
7017671 Williford Mar 2006 B2
7021374 Pietras Apr 2006 B2
7025130 Bailey et al. Apr 2006 B2
7073598 Haugen Jul 2006 B2
7090021 Pietras Aug 2006 B2
7096948 Mosing et al. Aug 2006 B2
7114235 Jansch et al. Oct 2006 B2
7128161 Pietras Oct 2006 B2
7137454 Pietras Nov 2006 B2
7140443 Beierbach et al. Nov 2006 B2
7143849 Shahin et al. Dec 2006 B2
7147254 Niven et al. Dec 2006 B2
7159654 Ellison et al. Jan 2007 B2
7178612 Belik Feb 2007 B2
7213656 Pietras May 2007 B2
7219744 Pietras May 2007 B2
7231969 Folk et al. Jun 2007 B2
7270189 Brown et al. Sep 2007 B2
7281451 Schulze Beckinghausen Oct 2007 B2
7281587 Haugen Oct 2007 B2
7284617 Pietras Oct 2007 B2
7303022 Tilton et al. Dec 2007 B2
7325610 Giroux et al. Feb 2008 B2
7341281 Guesnon Mar 2008 B2
7353880 Pietras Apr 2008 B2
7448456 Shahin et al. Nov 2008 B2
7451826 Pietras Nov 2008 B2
7490677 Buytaert et al. Feb 2009 B2
7503397 Giroux et al. Mar 2009 B2
7509722 Shahin et al. Mar 2009 B2
7513300 Pietras et al. Apr 2009 B2
7591304 Juhasz et al. Sep 2009 B2
7617866 Pietras Nov 2009 B2
7635026 Mosing et al. Dec 2009 B2
7665515 Mullins Feb 2010 B2
7665530 Wells et al. Feb 2010 B2
7665531 Pietras Feb 2010 B2
7669662 Pietras Mar 2010 B2
7690422 Swietlik et al. Apr 2010 B2
7694730 Angman Apr 2010 B2
7694744 Shahin Apr 2010 B2
7699121 Juhasz et al. Apr 2010 B2
7712523 Snider et al. May 2010 B2
7730698 Montano et al. Jun 2010 B1
7757759 Jahn et al. Jul 2010 B2
7779922 Harris et al. Aug 2010 B1
7793719 Snider et al. Sep 2010 B2
7817062 Li et al. Oct 2010 B1
7828085 Kuttel et al. Nov 2010 B2
7841415 Winter Nov 2010 B2
7854265 Zimmermann Dec 2010 B2
7866390 Latiolais, Jr. et al. Jan 2011 B2
7874352 Odell, II et al. Jan 2011 B2
7874361 Mosing et al. Jan 2011 B2
7878237 Angman Feb 2011 B2
7878254 Abdollahi et al. Feb 2011 B2
7882902 Boutwell, Jr. Feb 2011 B2
7896084 Haugen Mar 2011 B2
7918273 Snider et al. Apr 2011 B2
7958787 Hunter Jun 2011 B2
7971637 Duhon et al. Jul 2011 B2
7975768 Fraser et al. Jul 2011 B2
8118106 Wiens et al. Feb 2012 B2
8141642 Olstad et al. Mar 2012 B2
8210268 Heidecke et al. Jul 2012 B2
8281856 Jahn et al. Oct 2012 B2
8307903 Redlinger et al. Nov 2012 B2
8365834 Liess et al. Feb 2013 B2
8459361 Leuchtenberg Jun 2013 B2
8505984 Henderson et al. Aug 2013 B2
8567512 Odell, II et al. Oct 2013 B2
8601910 Begnaud Dec 2013 B2
8636067 Robichaux et al. Jan 2014 B2
8651175 Fallen Feb 2014 B2
8668003 Osmundsen et al. Mar 2014 B2
8708055 Liess et al. Apr 2014 B2
8727021 Heidecke et al. May 2014 B2
8776898 Liess et al. Jul 2014 B2
8783339 Sinclair et al. Jul 2014 B2
8839884 Kuttel et al. Sep 2014 B2
8893772 Henderson et al. Nov 2014 B2
9045960 Vanderford Jun 2015 B2
9068406 Clasen et al. Jun 2015 B2
9206851 Slaughter, Jr. et al. Dec 2015 B2
9528326 Heidecke et al. Dec 2016 B2
9617819 Older Apr 2017 B2
9631438 McKay Apr 2017 B2
9689211 Joensen Jun 2017 B2
10094501 Bull Oct 2018 B2
10156114 Partridge Dec 2018 B2
20020043403 Juhasz et al. Apr 2002 A1
20020074132 Juhasz et al. Jun 2002 A1
20020084069 Mosing et al. Jul 2002 A1
20020129934 Mullins et al. Sep 2002 A1
20020170720 Haugen Nov 2002 A1
20030098150 Andreychuk May 2003 A1
20030107260 Ording et al. Jun 2003 A1
20030221519 Haugen Dec 2003 A1
20040003490 Shahin et al. Jan 2004 A1
20040069497 Jones et al. Apr 2004 A1
20040216924 Pietras et al. Nov 2004 A1
20050000691 Giroux et al. Jan 2005 A1
20050173154 Lesko Aug 2005 A1
20050206163 Guesnon Sep 2005 A1
20050257933 Pietras Nov 2005 A1
20050269072 Folk et al. Dec 2005 A1
20050269104 Folk et al. Dec 2005 A1
20050269105 Pietras Dec 2005 A1
20050274508 Folk et al. Dec 2005 A1
20060000600 Pietras Jan 2006 A1
20060037784 Walter et al. Feb 2006 A1
20060124353 Juhasz Jun 2006 A1
20060151181 Shahin Jul 2006 A1
20060180315 Shahin et al. Aug 2006 A1
20070030167 Li et al. Feb 2007 A1
20070044973 Fraser et al. Mar 2007 A1
20070074588 Harata et al. Apr 2007 A1
20070074874 Richardson Apr 2007 A1
20070102992 Jager May 2007 A1
20070131416 Odell, II et al. Jun 2007 A1
20070140801 Kuttel et al. Jun 2007 A1
20070144730 Shahin et al. Jun 2007 A1
20070158076 Hollingsworth, Jr. et al. Jul 2007 A1
20070251699 Wells et al. Nov 2007 A1
20070251701 Jahn et al. Nov 2007 A1
20070257811 Hall et al. Nov 2007 A1
20080059073 Giroux et al. Mar 2008 A1
20080093127 Angman Apr 2008 A1
20080099196 Latiolais et al. May 2008 A1
20080125876 Boutwell May 2008 A1
20080202812 Childers et al. Aug 2008 A1
20080308281 Boutwell, Jr. et al. Dec 2008 A1
20090151934 Heidecke et al. Jun 2009 A1
20090159294 Abdollahi et al. Jun 2009 A1
20090200038 Swietlik et al. Aug 2009 A1
20090205820 Koederitz et al. Aug 2009 A1
20090205827 Swietlik et al. Aug 2009 A1
20090205836 Swietlik et al. Aug 2009 A1
20090205837 Swietlik et al. Aug 2009 A1
20090229837 Wiens et al. Sep 2009 A1
20090266532 Revheim et al. Oct 2009 A1
20090272537 Alikin et al. Nov 2009 A1
20090274544 Liess Nov 2009 A1
20090274545 Liess et al. Nov 2009 A1
20090316528 Ramshaw et al. Dec 2009 A1
20090321086 Zimmermann Dec 2009 A1
20100032162 Olstad et al. Feb 2010 A1
20100101805 Angelle et al. Apr 2010 A1
20100200222 Robichaux et al. Aug 2010 A1
20100206552 Wollum Aug 2010 A1
20100206583 Swietlik Aug 2010 A1
20100206584 Clubb et al. Aug 2010 A1
20100236777 Partouche et al. Sep 2010 A1
20110036586 Hart et al. Feb 2011 A1
20110039086 Graham et al. Feb 2011 A1
20110088495 Buck et al. Apr 2011 A1
20110214919 McClung, III Sep 2011 A1
20110280104 McClung, III Nov 2011 A1
20120048574 Wiens et al. Mar 2012 A1
20120152530 Wiedecke et al. Jun 2012 A1
20120160517 Bouligny et al. Jun 2012 A1
20120212326 Christiansen et al. Aug 2012 A1
20120234107 Pindiprolu et al. Sep 2012 A1
20120298376 Twardowski Nov 2012 A1
20130020095 Vanderford Jan 2013 A1
20130055858 Richardson Mar 2013 A1
20130056977 Henderson et al. Mar 2013 A1
20130062074 Angelle et al. Mar 2013 A1
20130075077 Henderson et al. Mar 2013 A1
20130075106 Tran et al. Mar 2013 A1
20130105178 Pietras May 2013 A1
20130207382 Robichaux Aug 2013 A1
20130207388 Jansson et al. Aug 2013 A1
20130233624 In Sep 2013 A1
20130269926 Liess et al. Oct 2013 A1
20130271576 Elllis Oct 2013 A1
20130275100 Ellis et al. Oct 2013 A1
20130299247 Küttel et al. Nov 2013 A1
20140090856 Pratt et al. Apr 2014 A1
20140116686 Odell, II et al. May 2014 A1
20140131052 Richardson May 2014 A1
20140202767 Feasey Jul 2014 A1
20140233804 Gustavsson et al. Aug 2014 A1
20140262521 Bradley et al. Sep 2014 A1
20140305662 Giroux et al. Oct 2014 A1
20140326468 Heidecke et al. Nov 2014 A1
20140352944 Devarajan et al. Dec 2014 A1
20140360780 Moss et al. Dec 2014 A1
20150014063 Simanjuntak et al. Jan 2015 A1
20150053424 Wiens et al. Feb 2015 A1
20150069755 Bull Mar 2015 A1
20150083391 Bangert et al. Mar 2015 A1
20150107385 Mullins et al. Apr 2015 A1
20150218894 Slack Aug 2015 A1
20150337648 Zippel et al. Nov 2015 A1
20160024862 Wilson et al. Jan 2016 A1
20160138348 Kunec May 2016 A1
20160145954 Helms et al. May 2016 A1
20160177639 McIntosh et al. Jun 2016 A1
20160215592 Helms et al. Jul 2016 A1
20160230481 Misson et al. Aug 2016 A1
20160376863 Older Dec 2016 A1
20170037683 Heidecke et al. Feb 2017 A1
20170044854 Hebebrand et al. Feb 2017 A1
20170044875 Hebebrand et al. Feb 2017 A1
20170051568 Wern et al. Feb 2017 A1
20170067303 Thiemann et al. Mar 2017 A1
20170067320 Zouhair Mar 2017 A1
20170074075 Liess Mar 2017 A1
20170211327 Wern et al. Jul 2017 A1
20170211343 Thiemann Jul 2017 A1
20170284164 Holmes et al. Oct 2017 A1
20170328164 Partridge Nov 2017 A1
20180245433 Fuehring Aug 2018 A1
20180372254 Bull Dec 2018 A1
20190040914 Liess Feb 2019 A1
20190106977 Amezaga Apr 2019 A1
Foreign Referenced Citations (36)
Number Date Country
2012201644 Apr 2012 AU
2013205714 May 2013 AU
2014215938 Sep 2014 AU
2 707 050 Jun 2009 CA
2 841 654 Aug 2015 CA
2944327 Oct 2015 CA
102007016822 Oct 2008 DE
0 250 072 Dec 1987 EP
1 619 349 Jan 2006 EP
1 772 715 Apr 2007 EP
1 961 912 Aug 2008 EP
1 961 913 Aug 2008 EP
2085566 Aug 2009 EP
2 322 357 May 2011 EP
3032025 Jun 2016 EP
1487948 Oct 1977 GB
2 077 812 Dec 1981 GB
2 180 027 Mar 1987 GB
2 228 025 Aug 1990 GB
2 314 391 Dec 1997 GB
2004079153 Sep 2004 WO
2004101417 Nov 2004 WO
2007001887 Jan 2007 WO
2007070805 Jun 2007 WO
2007127737 Nov 2007 WO
2008005767 Jan 2008 WO
2009076648 Jun 2009 WO
2012100019 Jul 2012 WO
2012115717 Aug 2012 WO
2014056092 Apr 2014 WO
2015000023 Jan 2015 WO
2015119509 Aug 2015 WO
2015127433 Aug 2015 WO
2015176121 Nov 2015 WO
2016197255 Dec 2016 WO
2017044384 Mar 2017 WO
Non-Patent Literature Citations (68)
Entry
A123 System; 14Ah Prismatic Pouch Cell; Nanophosphate® Lithium-Ion; www.a123systems.com; date unknown; 1 page.
Streicher Load/Torque Cell Systems; date unknown; 1 page.
3PS, Inc.; Enhanced Torque and Tension Sub with Integrated Turns; date unknown; 2 total pages.
Lefevre, et al.; Drilling Technology; Deeper, more deviated wells push development of smart drill stem rotary shouldered connections; dated 2008; 2 total pages.
PCT Invitaiton to Pay Additional Fees for International Application No. PCT/US2008/086699; dated Sep. 9, 2009; 7 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2008/086699; dated Sep. 11, 2009; 19 total pages.
National Oilwell Varco; Rotary Shoulder Handbook; dated 2010; 116 total pages.
Weatherford; TorkSub™ Stand-Alone Torque Measuring System; dated 2011-2014; 4 total pages.
Australian Examination Report for Application No. 2008334992; dated Apr. 5, 2011; 2 total pages.
European Search Report for Application No. 08 860 261.0-2315; dated Apr. 12, 2011; 4 total pages.
Eaton; Spool Valve Hydraulic Motors; dated Sep. 2011; 16 total pages.
European Extended Search Report for Application No. 12153779.9-2315; dated Apr. 5, 2012; 4 total pages.
Australian Examination Report for Application No. 2012201644; dated May 15, 2013; 3 total pages.
Warrior; 250E Electric Top Drive (250-TON); 250H Hydraulic Top Drive (250-TON); dated Apr. 2014; 4 total pages.
Hydraulic Pumps & Motors; Fundamentals of Hydraulic Motors; dated Jun. 26, 2014; 6 total pages.
Warrior; Move Pipe Better; 500E Electric Top Drive (500 ton-1000 hp); dated May 2015; 4 total pages.
Canadian Office Action for Application No. 2,837,581; dated Aug. 24, 2015; 3 total pages.
European Extended Search Report for Application No. 15166062.8-1610; dated Nov. 23, 2015; 6 total pages.
Australian Examination Report for Application No. 2014215938; dated Feb. 4, 2016; 3 total pages.
Rexroth; Bosch Group; Motors and Gearboxes; Asynchronous high-speed motors 1 MB for high speeds; dated Apr. 13, 2016; 6 total pages.
Canadian Office Action for Application No. 2,837,581; dated Apr. 25, 2016; 3 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2015/061960; dated Jul. 25, 2016; 16 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/049462; dated Nov. 22, 2016; 14 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/050542; dated Nov. 25, 2016; 13 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/046458; dated Dec. 14, 2016; 16 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/047813; dated Jan. 12, 2017; 15 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/050139; dated Feb. 20, 2017; 20 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/014646; dated Apr. 4, 2017; 14 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/014224; dated Jun. 8, 2017; 15 total pages.
European Extended Search Report for Application No. 17152458.0-1609; dated Jun. 8, 2017; 7 total pages.
Australian Examination Report for Application No. 2017200371; dated Sep. 19, 2017; 5 total pages.
European Extended Search Report for Application No. 17195552.9-1614; dated Dec. 4, 2017; 6 total pages.
Australian Examination Report for Application No. 2017200371; dated Feb. 8, 2018; 6 total pages.
Canadian Office Action for Application No. 2,955,754; dated Mar. 28, 2018; 3 total pages.
Australian Examination Report for Application No. 2017200371; dated May 2, 2018; 4 total pages.
Canadian Office Action for Application No. 2,974,298; dated May 16, 2018; 3 total pages.
EPO Extended European Search Report dated Jun. 6, 2018, for European Application No. 18157915.2.
EPO Partial European Search Report dated Jul. 31, 2018, for European Application No. 18159597.6.
European Patent Office; Extended Search Report for Application No. 18160808.4; dated Sep. 20, 2018; 8 total pages.
EPO Partial European Search Report dated Oct. 4, 2018, for European Patent Application No. 18159598.4.
EPO Extended European Search Report dated Oct. 5, 2018, for European Patent Application No. 18173275.1.
EPO Extended European Search Report dated Nov. 6, 2018, for European Application No. 18159597.6.
International Search Report and Written Opinion in PCT/US2018/042812 dated Oct. 17, 2018.
Extended Search Report in application EP18177312.8 dated Nov. 6, 2018.
PCT International Search Report and Written Opinion dated Oct. 23, 2018, for International Application No. PCT/US2018/044162.
Canadian Office Action in related application CA 2,955,754 dated Jul. 17, 2018.
EPO Extended European Search Report dated Jul. 19, 2018, for European Application No. 18159595.0.
EPO Extended European Search Report dated Jul. 17, 2018, for European Application No. 181580507.
Cookson, Colter, “Inventions Speed Drilling, Cut Costs,” The American Oil & Gas Reporter, Sep. 2015, 2 pages.
Ennaifer, Amine et al. , “Step Change in Well Testing Operations,” Oilfield Review, Autumn 2014: 26, No. 3, pp. 32-41.
Balltec Lifting Solutions, LiftLOK™ Brochure, “Highest integrity lifting tools for the harshest environments,” 2 pages.
Balltec Lifting Solutions, CoilLOK™ Brochure, “Highest integrity hand-held coiled tubing handling tools,” 2 pages.
Peters; Tool Coupler for Use With a Top Drive; U.S. Appl. No. 15/656,508, filed Jul. 21, 2017. Application not attached to IDS.).
Fuehring et al.; Tool Coupler With Rotating Coupling Method for Top Drive; U.S. Appl. No. 15/445,758, filed Feb. 28, 2017. (Application not attached to IDS.).
Bell; Interchangeable Swivel Combined Multicoupler; U.S. Appl. No. 15/607,159, filed May 26, 2017 (Application not attached to IDS.).
Amezaga; Dual Torque Transfer for Top Drive System; U.S. Appl. No. 15/447,881, filed Mar. 2, 2017. (Application not attached to IDS.).
Zouhair; Coupler With Threaded Connection for Pipe Handler; U.S. Appl. No. 15/444,016, filed Feb. 27, 2017. (Application not attached to Ids.).
Liess; Downhole Tool Coupling System; U.S. Appl. No. 15/670,897, filed Aug. 7, 2017. Application not attached to Ids.).
Muller et al; Combined Multi-Coupler With Rotating Locking Method for Top Drive; U.S. Appl. No. 15/721,216, filed Sep. 29, 2017. (Application not attached to IDS.).
Amezaga et al; Tool Coupler With Threaded Connection for Top Drive; U.S. Appl. No. 15/457,572, filed Mar. 13, 2017. (Application not attached to IDS.).
Wiens; Combined Multi-Coupler With Locking Clamp Connection for Top Drive; U.S. Appl. No. 15/627,428, filed Jun. 19, 2017. (Application not attached to IDS.).
Henke et al.; Tool Coupler With Sliding Coupling Members for Top Drive; U.S. Appl. No. 15/448,297, filed Mar. 2, 2017. (Application not attached to IDS.).
Schoknecht et al.; Combined Multi-Coupler With Rotating Fixations for Top Drive; U.S. Appl. No. 15/447,926, filed Mar. 2, 2017. (Application not attached to IDS.).
Metzlaff et al.; Combined Multi-Coupler for Top Drive; U.S. Appl. No. 15/627,237, filed Jun. 19, 2017. (Application not attached to IDS.).
Liess; Combined Multi-Coupler for Top Drive; U.S. Appl. No. 15/656,914, filed Jul. 21, 2017. (Application not attached to IDS.).
Liess et al.; Combined Multi-Coupler; U.S. Appl. No. 15/656,684, filed Jul. 21, 2017. (Application not attached to IDS).
Amezaga et al.; Tool Coupler With Data and Signal Transfer Methods for Top Drive; U.S. Appl. No. 15/730,305, filed Oct. 11, 2017. (Application not attached to IDS).
Liess; Tool Coupler With Threaded Connection for Top Drive; U.S. Appl. No. 15/806,560, filed Nov. 8, 2017. (Application not attached to IDS).
Related Publications (1)
Number Date Country
20190040914 A1 Feb 2019 US