In the oil and gas industry, wireline cables are used to lower downhole tools into a wellbore to perform various services. A wireline cable (also referred to herein as a “wireline” or “cable” herein) can include electrical cabling capable of conveying power and data, to control tools and acquire real-time data from their operation.
Due to the nature of downhole operations, tools occasionally become stuck in the wellbore. This can happen for any number of reasons, such as the tool malfunctioning, the wellbore walls collapsing, or debris in the wellbore, to name a few examples. The risk of a stuck tool is also greater when the tool is used in a non-vertical wellbore, as the tool rests against the side of the wellbore and can more readily catch a protrusion or debris.
Stuck tools are typically removed by pulling or jarring. Pulling refers to applying a continuing force to the tool in order to physically pull the tool back uphole. Pulling can be performed by applying tension to the cable, for example. It can also be performed by a linear actuator on the tool or a related attachment, where the linear actuator provides the pulling force against the tool. Jarring refers to applying an impulse, such as a hammer-like strike, to the stuck tool in hopes of jarring it loose. In most cases, a jar tool is actuated by applying tension to the cable, which loads a spring that eventually releases and imparts an impulse.
Generally speaking, the process of jarring is a slow one. It normally requires a jar tool to perform the jarring, then another tool to perform the pulling. This requires moving tools in and out of the wellbore, slowing down the recovery process. Additionally, jar tools are difficult to use in highly deviated wells, as friction causes excessive cable tension at the surface in order to produce sufficient tension at the jar tool, potentially causing the cable to break.
As a result, a need exists for an integrated jarring tool that utilizes a linear actuator to perform the pulling action while also including a jar tool, eliminating the need to alternate between different recovery tools and speeding up the tool recovery process.
Examples described herein include systems and methods associated with a mechanical service tool. In one example, the service tool includes a power jar, an accelerator, and a linear actuator. The power jar can be a spring-based jarring tool. For example, it can include a jar spring and a hammer that impacts an anvil, where the spring can be loaded and released, causing the hammer to produce an impulse upon impact. This impulse is used to loosen a target object that may be stuck within the wellbore. The power jar can transition between a set state (where the power jar is ready to be powered up and fired) and a released state (after the power jar has fired and needs to be reset). The power jar can transition between the set state and released state by way of a collet being mechanically set or released based on a threshold force, or by an electric release built into the power jar.
The accelerator can be coupled to the power jar and provide assistance to the power jar. For example, the accelerator can include an accelerator spring that transfers force to the power jar. When the hammer in the power jar is released, the accelerator spring can impart an additional force to the hammer beyond what the jar spring already provides. In some examples, the service tool can include a release device between the accelerator and the power jar to assist with separating these components when necessary.
The linear actuator can be coupled to the accelerator and configured such that actuation of the linear actuator imparts force to the accelerator. For example, the linear actuator can be used to pull the accelerator spring within the accelerator, such as by imparting force to the accelerator sufficient to activate the power jar. When the power jar is in a released state, the linear actuator can also be used to push or pull the entire accelerator and power jar assembly, which in turn can push or pull the target object within the wellbore. This is especially useful when done immediately after a jarring impact that loosens the target object before pulling or pushing. The linear actuator can also be used to move the power jar from a released state to a set state. The linear actuator can include a force sensor and/or position sensor that measures force of position, respectively, of the linear actuator at a point in time.
The mechanical service tool can also include one or more anchors for securing a portion of the linear actuator relative to the wellbore, such that the linear actuator can operate the accelerator without moving the mechanical service tool within the wellbore. The anchor can be one or more protrusions that contact the inner surface of the wellbore to stabilize and/or centralize the service tool.
Methods of using the disclosed mechanical service tool are also provided herein. An example method includes inserting the mechanical service tool described above into a wellbore, coupling the mechanical service tool to a target object, and firing the power jar of the mechanical service tool by actuating the linear actuator. The method can also include anchoring the mechanical service tool by extending one or more anchors before firing. The method can further include actuating the linear actuator to apply a pulling force to the target object without firing the power jar. In one example, the method is performed without applying additional tension to the cable. The method can also include removing the mechanical service tool from the wellbore, which causes the target object to be removed as well.
Some or all portions of the example methods described herein can be performed using a non-transitory, computer-readable medium having instructions that, when executed by a processor associated with a computing device, cause the processor to perform the stages described. Additionally, the example methods summarized above can each be implemented in a system including, for example, a memory storage and a computing device having a processor that executes instructions to carry out some or all of the stages described.
Both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the examples, as claimed.
Reference will now be made in detail to the present examples, including examples illustrated in the accompanying drawings. Examples described herein include systems and methods associated with a mechanical service tool. In one example, the service tool includes a power jar (also referred to herein as a “jar” or “jar tool”), an accelerator, and a linear actuator. The accelerator can be coupled to the power jar and provide assistance to the power jar. The linear actuator can be coupled to the accelerator and configured such to pull the accelerator spring within the accelerator with a force sufficient to fire the power jar. When the power jar is in a released state, the linear actuator can also be used to push or pull the entire accelerator and power jar assembly, which in turn can push or pull the target object within the wellbore. The linear actuator can also be used to move the power jar from a released state to a set state.
A wireline surface system 20 at the ground level includes a wireline logging unit, a wireline depth control system 22 having a cable 18, and an electronic control system 28. The cable 18 is connected to a mechanical service tool 12 that may be lowered downhole. The electronic control system 28 includes a processor 30, memory 32, storage 34, and display 36 that may be used to control various operations of the wireline surface system 20, send and receive data, and store data.
The wireline surface system 20 can deploy the cable 18, which in turn lowers the mechanical service tool 12 deeper downhole. Conversely, the wireline surface system 20 can retract the cable 18 and raise the mechanical service tool 12, including to the surface. The cable 18 is deployed or retracted by the wireline depth control system 22, such as by unwinding or winding the cable 18 around a spool that is driven by a motor.
The wireline logging unit communicates with the electronic control system 28 to send and receive data and control signals. For example, the wireline logging unit can communicate data received from the mechanical service tool 12 to the electronic control system 28. The wireline logging unit likewise can communicate data and control signals received from the electronic control system 28 to the mechanical service tool 12.
The components of
When the anchor portion 230 is engaged, the portion of the linear actuator 240 that is coupled to the anchor portion 230 can be held in a relatively fixed position. That is, actuation of the linear actuator 240 can cause one end of the linear actuator 240 to move, while the other end remains fixed by way of its coupling to the anchor portion 230. As a result, the linear actuator can be used to push and pull against the remaining components 250, 260, 270 of the mechanical service tool.
In an example where the jar tool 270 is coupled to a target object, such as an object that is stuck in the wellbore, then the downhole end of the mechanical service tool can be held in a fixed position as well—at least until the target object is loosened or moved. In that example scenario, actuation of the linear actuator 240 would not move either end of the mechanical service tool. Instead, that linear movement can be transferred to the accelerator portion 260 and/or the jar tool 270. This can be accomplished based on the linear actuator being coupled directly to the jar tool 270 or the accelerator 260, or by being coupled to either of those components by way of an optional crossover portion 250. The crossover portion 250 can use standard sizes for fittings and other mechanical interfaces such that existing parts could be connected to one another in a new manner.
As shown in
In one embodiment, the mechanical service tool may include one or more sensors coupled to the mechanical service tool. The one or more sensors may couple to various components of the mechanical service tool such as the anchor portion 230, linear actuator 240, crossover module 250, accelerator 260, jar tool 270, or any additional component. The one or more sensors may collect pertinent data (e.g., measure displacement of the linear actuator 240) about the components of the mechanical service tool and transmit said data to the surface via the telemetry (e.g., via electrical or optical signals pulsed through the geological formation or via mud pulse telemetry). As set forth above, the data processing system 28 may process the data collected by the one or more sensors. The one or more sensors may additionally provide data about the position of the mechanical service tool within the wellbore 210.
In one embodiment, the mechanical service tool may include a communication and control system which may receive and process a portion or all of the data received by the one or more sensors. The communication and control system may additionally transmit said data to the data processing system via suitable telemetry. In another embodiment, the data processing system, communication and controls system, or an additional system may use the received data to automate a portion, or all of the machining operations set forth herein.
A controller may couple to the mechanical service tool. The controller may be operatively coupled to the data processing system and may operate a power unit (e.g., one or more electric motors). The power unit may actuate the linear actuator 240.
In another embodiment, the power unit may include a hydraulic system (e.g., hydraulic pump). In another embodiment, the power unit may be replaced, or used in combination with, an external power unit (e.g., an external hydraulic pump) which may be located at the surface of the wellbore. The external hydraulic pump may supply the hydraulic fluid required to operate the linear actuator.
The stroke required to preload the accelerator 260 and fire the jar 270 can be set to less than the full stroke available from the linear actuator 240. Then after firing the jar 270, the linear actuator 240 can continue stroking at the same anchor position until the jar 270 and accelerator 260 reach the end of stroke and full linear actuator 240 force is transferred to the target object. The linear actuator 240 position can be measured and controlled to allow the jar 270 to be reset and fired multiple times before then continuing the linear actuator 240 stroke to apply full linear actuator 240 force to the target object.
The jar tool 270 and accelerator 260 can be set to specific force settings required to preload the accelerator 260 and activate the firing mechanism of the jar 270. Accelerator preload and firing force setting is typically limited by the amount of cable tension that can be applied. In highly deviated or extended reach wells, the cable tension available is limited by friction forces from the cable and the wellbore. This means that the energy available to be stored in the accelerator and jar is reduced and jarring becomes ineffective. To solve this, the energy can be provided by electrical power on the wireline cable, which is converted to hydraulic power in the linear actuator 240. This linear actuator 240 can then provide the displacement and force required in order to preload the accelerator 260 and fire the jar 270 properly, restoring the effectiveness of the jar in these wells.
As an alternate embodiment, the electrical energy can also be converted to mechanical energy using a motor and screw to preload the accelerator 260 and jar 270. The linear displacement used to preload the accelerator 260 and fire the jar 270 can also be provided by a wireline tractor.
In cases where the stroke provided by the linear actuator 240 is not sufficient, the accelerator 260 can be modified to use stronger springs to store more energy in a shorter stroke length.
The linear actuator 240 provides axial force to push or pull the accelerator 260. The anchoring arms hold the anchor portion 230 in place while the accelerator 260 is pushed or pulled by the linear actuator 240 to energize the accelerator 260 for firing the jar 270.
In some embodiments, a controller causes the linear actuator 240 to extend or retract its rod, which, in turn, energizes the accelerator 260. The accelerator 260 and jar 270 can be reset by stroking down with the linear actuator 240 until it reaches the initial latched position. As an alternate embodiment the jar 270 and accelerator 260 can be reset by releasing the anchor 230 and letting the tool descend by gravity, or the jar 270 can be reset using a wireline tractor.
As an alternate embodiment, the anchor portion 230 can be repositioned after firing the jar 270 to achieve a stroke on the accelerator 260 and jar 270 that is greater than one full stroke from the linear actuator 240. Repositioning can be accomplished either by moving the toolstring using the cable or by moving the toolstring using a wireline tractor.
The tool 300 may be configured to perform various intervention operations downhole, such as setting and retrieving plugs, opening and closing valves, cutting tubular elements, drilling through obstructions, performing cleaning and/or polishing operations, collecting debris, performing caliper runs, shifting sliding sleeves, performing milling operations, performing fishing operations, and other appropriate intervention operations. Some of these operations will be described in more detail in the paragraphs below.
In the embodiment of
The head assembly 320 may be configured to mechanically couple the tool 300 to a wireline 310. In one embodiment, the head assembly 320 includes a sensor 325 for measuring the amount of cable tension between the wireline 310 and the head assembly 320. Although a wireline 310 is shown in
The communications module 330 may be configured to receive and send commands and data which are transmitted in digital form on the wireline 310. This communication is used to initiate, control and monitor the intervention operation performed by the intervention tool. The communications module 330 may also be configured to facilitate this communication between the drive electronics module 340 and a surface system 316 at the well surface 311. Such communication will be described in more detail in the paragraphs below. As such, the communications module 330 may operate as a telemetry device.
The drive electronics module 340 may be configured to control the operation of the module 370. The drive electronics module 340 may also be configured to control the hydraulic power module 350. As such, the drive electronics module 340 may include various electronic components (e.g., digital signal processors, power transistors, and the like) for controlling the operation of the module 370 and/or the hydraulic power module 350.
In one embodiment, the drive electronics module 340 may include a sensor 345 for measuring the temperature of the electronics contained therein. In another embodiment, the drive electronics module 340 may be configured to automatically turn off or shut down the operation of the electronics if the measured temperature exceeds a predetermined maximum operating temperature.
The hydraulic power module 350 may be configured to supply hydraulic power to various components of the tool 300, including the anchoring system 360 and the module 370. The hydraulic power module 350 may include a motor, a pump and other components that are typically part of a hydraulic power system. In one embodiment, the hydraulic power module 350 includes one or more sensors 355 for measuring the amount of pressure generated by the hydraulic power module 350. In another embodiment, the one or more hydraulic power module sensors 355 are used to measure the temperature of the motor inside the hydraulic power module 350. The pressure and/or temperature measurements may then be forwarded to the drive electronics module 340.
In response to receiving the measurements from the one or more hydraulic power module sensors 355, the drive electronics module 340 may determine whether the measured temperature exceeds a predetermined maximum operating temperature. If it is determined that the measured temperature exceeds the predetermined maximum operating temperature, then the drive electronics module 340 may automatically shut down or turn off the motor inside the hydraulic power module 350 to avoid overheating. Likewise, the drive electronics module 340 may monitor the measured pressure and control the hydraulic power module 350 to maintain a desired output pressure.
Alternatively, the drive electronics module 340 may forward the pressure and/or temperature measurements made by the one or more hydraulic power module sensors 355 to the surface system 316 through the communications module 330. In response to receiving these measurements, an operator at the well surface 311 may monitor and/or optimize the operation of the hydraulic power module 350, e.g., by manually turning off the motor or the pump of the hydraulic power module 350. Although the tool 300 is described with reference to a hydraulic power system, it should be understood that in some embodiments the tool 300 may use other types of power distribution systems, such as an electric power supply, a fuel cell, or another appropriate power system.
The anchoring system 360 may be configured to anchor the tool 300 to an inner surface of a wellbore wall 312, which may or may not include a casing, tubing, liner, or other tubular element. Alternatively, the anchoring system 360 may be used to anchor the tool 300 to any other appropriate fixed structure or to any other device that the tool 300 acts upon.
In one embodiment the anchoring system 360 includes a piston 362 which is coupled to a pair of arms 364 in a manner such that a linear movement of the piston 362 causes the arms 364 to extend radially outwardly toward the wellbore wall 312, thereby anchoring the tool 300 to the wellbore wall 312. In one embodiment, the anchoring system 360 includes one or more sensors 365 for measuring the linear displacement of the piston 362, which may then be used to determine the extent to which the arms 364 have moved toward the wellbore wall 312, and therefore the radial opening of the wellbore. In another embodiment, the one or more anchoring system sensors 365 are used to measure the amount of pressure exerted by the arms 364 against the wellbore wall 312. In yet another embodiment, the one or more anchoring system sensors 365 are used to measure the slippage of the tool 300 relative to the wellbore wall 312.
As with the measurements discussed above, the linear displacement, radial opening, pressure and/or slippage measurements made by the one or more anchoring system sensors 365 may be forwarded to the drive electronics module 340. In one embodiment, the drive electronics module 340 may forward those measurements to the surface system 160 through the communications module 330. Upon receipt of the measurements, the operator at the well surface 311 may then monitor, adjust and/or optimize the operation of the anchoring system 360.
In another embodiment, the drive electronics module 340 automatically adjusts or optimizes the operation of the anchoring system 360, such as by adjusting the linear displacement of the piston 362 so that the arms 364 may properly engage the wellbore wall 312 based on the linear displacement, radial opening, pressure and/or slippage measurements.
The tool 300 also includes a module 370, which is capable of performing various operations. In one embodiment, the module 370 includes a linear actuator module 380 and a connected module. The linear actuator module 380 may be configured to push or pull the connected module. The connected module can be any type of connection or other tool portion. For example, the connected module can include one or more of the crossover component 250, accelerator 260, or jar tool 270 as shown in
In one embodiment, the linear actuator module 380 includes one or more sensors 385 for measuring the linear displacement of the linear actuator. In another embodiment, the one or more linear actuator sensors 385 are used to measure the amount of force exerted by the linear actuator module 380. As with other measurements discussed above, the linear displacement and/or force measurements made by the one or more linear actuator sensors 385 may be forwarded to the drive electronics module 340, which may then forward these measurements to the surface system 316 through the communications module 330. Upon receipt of the linear displacement and/or force measurements, the operator at the well surface 312 may monitor and/or optimize the operation of the linear actuator module 380.
In one embodiment, the drive electronics module 340 may automatically adjust the linear displacement of the linear actuator module 380 and the amount of force exerted by the linear actuator module 380 based on the linear displacement and/or force measurements made by the one or more linear actuator sensors 385.
In one embodiment, a tractor is disposed between the communications module 330 and the drive electronics module 340 to deploy the tool 300 downhole. Once the tool 300 has been set at a desired location in the wellbore 312, the tractor may be turned off. In this manner, the tool 300 may be modular.
The jar tool 410 may include a jar body 412 that includes an upper end portion 414 and a lower end portion 416. In one embodiment, the upper end portion 414 may include threads 418 which may couple the jar tool 410 to the mechanical service tool 12. In another embodiment, the jar tool 410 may include a downhole tool 420 coupled to the lower end portion 416 of the jar body 412. The jar tool 410 may include an anvil 422 that may receive an impulse (e.g., a force associated with a sudden change in momentum) from a hammer 430 (e.g. a spring loaded shuttle), the impulse being then transmitted to the jar body 412. The hammer 430 may be accelerated (e.g., via the spring 428, gravity) and rapidly halted by the anvil 422 such to create the impulse. The anvil 422 may be located near the upper end portion 414 and the hammer 430 nearer the lower end portion 416 of the jar tool 410 and may hence generate an impact force in the upward longitudinal 454 direction. In another embodiment, the anvil 422 may be located near the lower end portion 416 and the hammer 430 nearer the upper end portion 414 of the jar tool 410 and may hence generate an impact in the downward longitudinal 454 direction. The impact force may be transferred to the mechanical service tool 12 via the threads 418 and may free the mechanical service tool 12 from the construction within the casing 220 and/or the wellbore 16.
In one embodiment, a threaded shaft 424 may protrude through an opening 426 in the anvil 422. A spring 428 may be disposed within the jar body 412 and may include an upper end portion coupled to a hammer assembly 430 and a lower end portion coupled to a retaining sleeve 432. As described in greater detail herein, the hammer assembly 430 striking the anvil 422 may generate the impulse, and hence the longitudinal 454 force. The hammer 430 may be moved to a staging position such that the hammer 430 may be accelerated and collide with an impact position to create the impact force along the longitudinal 454 direction.
When the plunger 740 moves in a direction away from the accelerator spring 720, it pulls the rod 730 and end cap 760 in that same direction, causing the accelerator spring 720 to compress.
The accelerator assembly 710 of
After a threshold amount of tension has been applied to the jar tool 810, the collet 840 compresses such that it slips off the shoulder 850. Release of the collet 840 causes the jar tool 810 to fire, unloading the energy stored in both the jar springs 820 as well as the accelerator spring 720. This energy is transferred to an anvil 860 based on an impact from a hammer 880 portion of the jar tool 810. This impact creates an impulse that is sent through the target object. The hammer 880 and anvil 860 can be arranged in various different manner, with different components functioning as the hammer 880 and anvil 860 respectively. For example, in
In another example, the hammer can be a mass (not shown) coupled to the opposite end of the jar tool 810, such as by being coupled to the sidewalls of element 860 (at a location proximate the distal end of pin 830). In that example, the hammer moves with element 860 as element 860 is pulled away from element 880 (which maintains its relative position) and as the springs 820 are loaded. Shoulder 850 can function as an anvil in this example, maintaining its relative position during the loading and firing processes. When the jar tool 810 fires, element 860 and the coupled mass can be accelerated in the direction of pulling. This causes the mass to impact the shoulder 850, such as a portion of the shoulder 850 not shown in
After firing, the jar tool 810 can be considered to be in a “released” position. The linear actuator can be used to push the jar tool 810 in the other direction, causing the collet 840 to be pushed back inside the shoulder 850 to lock into the set position. Even after the jar tool 810 is returned to its set position, the linear actuator can continue its stroke in order to apply a pushing or pulling force to the target object, depending on the orientation. The firing process can then be repeated.
At stage 930, the mechanical service tool can be anchored in the wellbore. This can be performed by extending anchor arms on an anchor portion of the tool, such that the arms contact the inner surface of the wellbore or casing. In some examples, stage 930 occurs before loading the accelerator and/or jar tool, as described in subsequent steps. However, in some examples, it can be desirable to preload the accelerator and/or jar tool before using the linear actuator. For example, the linear actuator may not have sufficient stroke to fully compress the accelerator and jar tool. To avoid the need for a custom-designed linear actuator, a preloading strategy can be used.
The preloading can be performed by applying wireline cable tension in one example. As explained with respect to
At stage 940, the linear actuator of the mechanical service tool can be actuated in a direction and to an extent sufficient to fire the jar portion of the mechanical service tool. Further actuation of the linear actuator can exert a pulling force to the target object at stage 950. This can be performed without resetting the jar tool in an example.
At stage 960, the jar tool can be reset using the linear actuator. For example, the linear actuator can be actuated in the direction opposite to the direction used to fire the jar tool. This actuation can return the jar tool to its ready position. Additional stages, not shown in
Other examples of the disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the examples disclosed herein. Though some of the described methods have been presented as a series of steps, it should be appreciated that one or more steps can occur simultaneously, in an overlapping fashion, or in a different order. The order of steps presented are only illustrative of the possibilities and those steps can be executed or performed in any suitable fashion. Moreover, the various features of the examples described here are not mutually exclusive. Rather any feature of any example described here can be incorporated into any other suitable example. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosure being indicated by the following claims.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 63/260,760, filed on Aug. 31, 2021, which is incorporated by reference herein in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1030992 | Fulmer | Jul 1912 | A |
1785419 | Moss | Dec 1930 | A |
2160150 | Jimerson et al. | May 1939 | A |
2500402 | Ernest | Mar 1950 | A |
2588408 | O'leary | Mar 1952 | A |
2713992 | Snyder | Jul 1955 | A |
3167122 | Lang | Jan 1965 | A |
3225828 | Wisenbaker et al. | Dec 1965 | A |
4325436 | Richter et al. | Apr 1982 | A |
5069282 | Taylor | Dec 1991 | A |
5170843 | Taylor | Dec 1992 | A |
5695015 | Barr et al. | Dec 1997 | A |
5706896 | Tubel et al. | Jan 1998 | A |
5785120 | Smalley et al. | Jul 1998 | A |
5899268 | Lynde et al. | May 1999 | A |
6668945 | Ohmer | Dec 2003 | B2 |
6851475 | Simpson et al. | Feb 2005 | B2 |
6868901 | Mason et al. | Mar 2005 | B2 |
7575056 | Fuhst et al. | Aug 2009 | B2 |
7909100 | Bryant, Jr. et al. | Mar 2011 | B2 |
8789598 | Mlcak et al. | Jul 2014 | B1 |
10683719 | Motland | Jun 2020 | B2 |
20030234121 | Taylor | Dec 2003 | A1 |
20050092494 | McElroy et al. | May 2005 | A1 |
20050092495 | Evans | May 2005 | A1 |
20050150693 | Madden | Jul 2005 | A1 |
20060169456 | Evans | Aug 2006 | A1 |
20060207796 | Stewart | Sep 2006 | A1 |
20070084637 | Orban et al. | Apr 2007 | A1 |
20070151732 | Clemens | Jul 2007 | A1 |
20080087424 | McLaughlin | Apr 2008 | A1 |
20100258293 | Lynde et al. | Oct 2010 | A1 |
20110297380 | Alberty et al. | Dec 2011 | A1 |
20120029702 | Tverlid | Feb 2012 | A1 |
20120043089 | Hoffman et al. | Feb 2012 | A1 |
20140124191 | Hallundbæk | May 2014 | A1 |
20140311729 | Pasvandi | Oct 2014 | A1 |
20140360784 | Hunziker et al. | Dec 2014 | A1 |
20160032696 | Caccialupi et al. | Feb 2016 | A1 |
20160130904 | Andersen | May 2016 | A1 |
20160258254 | Guo | Sep 2016 | A1 |
20170175475 | Kartha | Jun 2017 | A1 |
20200190951 | Teurlay et al. | Jun 2020 | A1 |
20200332615 | Wiesenborn et al. | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
101012746 | Aug 2007 | CN |
102102510 | Jun 2011 | CN |
106194158 | Jun 2016 | CN |
106687242 | May 2017 | CN |
2813665 | Dec 2014 | EP |
2129350 | May 1984 | GB |
03069116 | Aug 2003 | WO |
2010085154 | Sep 2010 | WO |
2012054445 | Apr 2012 | WO |
2012074755 | Aug 2012 | WO |
2013134629 | Sep 2013 | WO |
2015112022 | Jul 2015 | WO |
2016028155 | Feb 2016 | WO |
2016085490 | Jun 2016 | WO |
2020006333 | Jan 2020 | WO |
Entry |
---|
International Search Report and Written Opinion issued in PCT Application PCT/US2018/052171 dated Jan. 17, 2019 (18 pages). |
International Search Report and Written Opinion issued in PCT Application PCT/US2018/052164 dated Mar. 6, 2019 (12 pages). |
International Preliminary Report on patentability issued in PCT Application PCT/US2018/052171 dated Apr. 2, 2020 (15 pages). |
International Preliminary Report on Patentability issued in PCT Application PCT/US2018/052164 dated Apr. 2, 2020 (8 pages). |
Partial Supplementary Search Report of European Patent Application No. 18858532.7 dated May 18, 2021, 11 pages. |
Extended Search Report of European Patent Application No. 18858532.7 dated Oct. 4, 2021, 10 pages. |
Search Report of Chinese Patent Application No. 201880075070X dated Nov. 10, 2021, 7 pages with English Translation. |
Substanative Exam issued in Saudi Arabian Patent Application No. 520411583 dated Mar. 29, 2022, 11 pages with English translation. |
Second Office Action issued in Chinese Patent Application No. 201880075070.X dated Jun. 15, 2022, 9 pages with English translation. |
Substantive Examination Report issued in Saudi Arabian Patent Application No. 520411583 dated Sep. 26, 2022, 10 pages with English translation. |
Search Report and Written Opinion issued in the PCT Application PCT/US2022/035067 dated Oct. 18, 2022, 11 pages. |
Office Action issued in U.S. Appl. No. 16/649,478 dated Oct. 18, 2021, 9 pages. |
Office Action issued in U.S. Appl. No. 16/649,478 dated Apr. 4, 2022, 17 pages. |
Notice of Allowance issued in U.S. Appl. No. 16/649,478 dated Sep. 23, 2022, 7 pages. |
Search Report and Written Opinion issued in the PCT Application PCT/US2022/035083 dated Oct. 14, 2022, 12 pages. |
Third Office Action issued in Chinese Patent Application No. 201880075070.X dated Oct. 21, 2022, 11 pages with English translation. |
International Search Report and Written Opinion issued in the PCT Application PCT/US2022/042166 dated Dec. 9, 2022, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20230066142 A1 | Mar 2023 | US |
Number | Date | Country | |
---|---|---|---|
63260760 | Aug 2021 | US |