There are various methods by which openings are created in a production liner for injecting fluid into a formation. In a “plug-and-perf” frac job, the production liner is made up from standard lengths of casing. Initially, the liner does not have any openings through its sidewalls. The liner is installed in the wellbore, either in an open bore using packers or by cementing the liner in place, and the liner walls are then perforated. The perforations are typically created by perforation guns that discharge shaped charges through the liner and, if present, adjacent cement.
The production liner is typically perforated first in a zone near the bottom of the well. Fluids are then pumped into the well to fracture the formation in the vicinity of the perforations. After the initial zone is fractured, a plug is installed in the liner at a position above the fractured zone to isolate the lower portion of the liner. The liner is then perforated above the plug in a second zone, and the second zone is fractured. This process is repeated until all zones in the well are fractured.
The plug-and-perf method is widely practiced, but it has a number of drawbacks, including that it can be extremely time consuming. The perforation guns and plugs are generally run into the well and operated individually. After the frac job is complete, the plugs are removed (e.g., drilled out) to allow production of hydrocarbons through the liner.
Embodiments of the disclosure include a downhole tool. The downhole tool includes a slips assembly, and a cone positioned at least partially within the slips assembly. The cone is configured to move axially relative to the slips assembly such that the cone presses the slips assembly radially outward and into engagement with a surrounding tubular in which the downhole tool is deployed. The downhole tool also includes a seal ring positioned around the cone. The seal ring is configured to be pressed radially outward by engagement with the cone and into engagement with the surrounding tubular.
Embodiments of the disclosure also include an assembly including a downhole tool and a setting tool. The downhole tool includes a slips assembly, and a cone received at least partially into the slips assembly. The cone is tapered such that moving the cone relative to the slips assembly causes the cone to press the slips assembly radially outward into engagement with a surrounding tubular into which downhole tool is deployed. The downhole tool also includes a seal ring received around the cone. The seal ring is configured to be pressed radially outward into engagement with the surrounding tubular by engagement with the cone. The setting tool includes a setting sleeve that is configured to apply an axial force onto the downhole tool that forces the cone to advance axially into the slips assembly, so as to press the slips assembly and the seal ring radially outward into engagement with the surrounding tubular.
Embodiments of the disclosure further include a method that includes connecting a setting rod of a setting tool to a shoe of a downhole tool. A setting sleeve of the setting tool engages a slips ring of the downhole tool, the slips ring being positioned around a cone of the downhole tool. The method also includes deploying the setting tool and the downhole tool into a well, and setting the downhole tool in the well using the setting tool. Setting the downhole tool includes pressing a first taper of the cone into a slips assembly of the downhole tool by applying an axial force to the slips ring. Applying the axial force to the slips ring causes the first taper of the cone to press the slips assembly radially outward. Applying the axial force also causes the slips ring to slide along a second taper of the cone, toward the slips assembly, so as to press the slips ring radially outward. Applying the axial force further causes a seal ring to slide along the first taper of the cone, so as to press the seal ring radially outward.
The present disclosure may best be understood by referring to the following description and accompanying drawings that are used to illustrate embodiments of the invention. In the drawings:
The following disclosure describes several embodiments for implementing different features, structures, or functions of the invention. Embodiments of components, arrangements, and configurations are described below to simplify the present disclosure; however, these embodiments are provided merely as examples and are not intended to limit the scope of the invention. Additionally, the present disclosure may repeat reference characters (e.g., numerals) and/or letters in the various embodiments and across the Figures provided herein. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed in the Figures. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Finally, the embodiments presented below may be combined in any combination of ways, e.g., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.
Additionally, certain terms are used throughout the following description and claims to refer to particular components. As one skilled in the art will appreciate, various entities may refer to the same component by different names, and as such, the naming convention for the elements described herein is not intended to limit the scope of the invention, unless otherwise specifically defined herein. Further, the naming convention used herein is not intended to distinguish between components that differ in name but not function. Additionally, in the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to.” All numerical values in this disclosure may be exact or approximate values unless otherwise specifically stated. Accordingly, various embodiments of the disclosure may deviate from the numbers, values, and ranges disclosed herein without departing from the intended scope. In addition, unless otherwise provided herein, “or” statements are intended to be non-exclusive; for example, the statement “A or B” should be considered to mean “A, B, or both A and B.”
The cone 102 has a tapered shape and is movable with respect to the slips assembly 108, the seal ring 104, and the shoe 110 by engagement with the setting tool 200. Moving the cone 102 farther into the slips assembly 108 and through the seal ring 104 may press the slips assembly 108 and seal ring 104 radially outwards, e.g., into engagement with a surrounding tubular.
The slips assembly 108 may further include a band 112, which may be received around an axial end of the slips assembly 108, as shown. The band 112 may be generally wedge-shaped, in some embodiments, with a tapered-down end facing the seal ring 104. Accordingly, in at least some embodiments, the seal ring 104 may be pressed into axial engagement with the slips assembly 108, specifically the band 112, which may drive the seal ring 104 radially outward, e.g., into sealing engagement with a surrounding tubular.
The slips assembly 108 may also include a plurality of circumferentially-adjacent slips segments 114. The slips segments 114 may be initially held together, e.g., via the band 112 and the shoe 110, as will be described in greater detail below. The slips segments 114 may be otherwise coupled together as well, e.g., by frangible or other temporary connections therebetween. The slips segments 114 may be made of a relatively soft, dissolvable material, such as magnesium or a dissolvable composite, or a soft, non-dissolvable material such as a composite material (e.g., fiber-reinforced material). Accordingly, to anchor into a surrounding (e.g., steel) tubular, the slips segments 114 may each include one or more inserts or “buttons” 116, which may be made from a ceramic or carbide and are oriented and/or otherwise configured to bite into the surrounding tubular when the slips assembly 108 is pressed radially outwards into engagement therewith.
The shoe 110 may be releasably coupled to the slips assembly 108 and may be configured to bear axially against the slips assembly 108, opposite to the cone 102. Accordingly, the shoe 110 serves to retain the position of the downhole tool 100 during setting, as will be described in greater detail below. The shoe 110 may be made of a relatively soft, dissolvable material, such as magnesium, or a soft, non-dissolvable material such as a composite material (e.g., fiber-reinforced material). In some embodiments, a dissolvable composite could be used. The shoe 110 may also include a plurality of (e.g., carbide or ceramic) inserts or “buttons” 117, which may extend radially outwards of the slips assembly 108, thereby protecting the relatively soft material of the slips assembly 108, the shoe 110, or any other components of the downhole tool 100 from abrasion against the surrounding tubular during run in.
The setting tool 200 includes an outer setting sleeve 202, which has an end that bears axially against the cone 102, so as to transmit a force thereto and cause the cone 102 to move with respect to the slips assembly 108 and the seal ring 104. In an embodiment, the setting sleeve 202 includes a radially-enlarged portion 204, proximal to (e.g., extending from) where the setting sleeve 202 engages the cone 102. The radially-enlarged portion 204 may extend to a radial position that is at least as far from a central axis of the assembly 10 as the cone 102. One or more inserts or “buttons” 207 may be embedded at least partially in the radially-enlarged portion 204. The inserts 207 may be formed from a material, such as carbide or ceramic, that is harder than the material of the rest of the setting sleeve 202, the cone 102, and/or the slips assembly 108 (except for the inserts 116). The cone 102 may be made of a relatively soft, dissolvable material, such as magnesium, or a soft, non-dissolvable material such as a composite material (e.g., fiber-reinforced material). In some embodiments, a dissolvable composite could be used. Accordingly, the inserts 207 may protect the cone 102, slips assembly 108, and/or other components of downhole tool 100 from abrasion against the surrounding tubular during run-in.
Referring now to
An obstruction member 300 may be positioned within the setting sleeve 202, e.g., in a storage pocket 210 formed in the radially-enlarged portion 204 thereof. The obstruction member 300 may be initially retained in position within the setting sleeve 202 by engagement with the setting rod 206 and the cone 102; however, after setting the downhole tool 100, the setting rod 206 may be released from the shoe 110, and the setting tool 200 pulled away from the downhole tool 100. This may allow the obstruction member 300 to drop out of the setting sleeve 202, e.g., propelled by fluid flow, and be received into a valve seat formed in a bore of the cone 102.
As also shown, the shoe 110 is detachably coupled to the slips assembly 108, in particular, such that pressing the slips assembly 108 radially outwards releases the slips assembly 108 from the shoe 110. For example, the slips assembly 108 may include a first interlocking member 306, which may receive a second interlocking member 308 of the shoe 110. A reduced-thickness (or otherwise reduced strength, or even adhered/epoxied) region 310 may be defined in the slips assembly 108, extending from the first interlocking member 306. Upon pressing the slips assembly 108 radially outwards, the reduced-thickness region 310 may break, separating the first interlocking member 306 from the rest of the slips assembly 108, and releasing the shoe 110 from the slips assembly 108.
As also visible in
Further, one or more seals 330, 332 may be positioned along the outer surface of the seal ring 104. The seals 330, 332 may be o-rings, and may be configured to seal with a surrounding tubular. In one embodiment, the seals 330, 332 may be elastomeric. In another embodiment, the seals 330, 332 may be configured to dissolve in the downhole, wellbore environment. For example, the seals 330, 332 may be made from polyglycolide (PGA). In some embodiments, a metal-to-metal seal between the seal ring 104 and the surrounding tubular may be sufficient such that the seals 330, 332 may be omitted. Additionally, the seal ring 104 may be undercut, e.g., defining a radiused or beveled edge between the axial face thereof that is closest to the band 112 and the inner diameter surface thereof. This may facilitate the seal ring 104 being wedged radially outwards by the band 112, e.g., allowing the band 112 to be wedged at least partially between the cone 102 and the seal ring 104.
At some point, after engagement with the surrounding tubular 400 is accomplished, as shown in
A seal 808 may be positioned on the recessed middle 806, between the axial ends 802, 804 of the seal ring 800. The seal 808 may be bonded with the recessed middle 806 and the axial ends 802, 804. The seal 808 may be formed from a polymeric material, an elastomeric material, or any other suitable sealing material. The seal 808 may, in some embodiments, have a groove 810 formed therein, approximately at the axial middle of the seal 808. The groove 810 may facilitate expansion and sealing with a surrounding tubular (e.g., the tubular 400 of
This embodiment of the downhole tool 100 may function similarly to the embodiments of
Accordingly, the cone 102 is driven into the slips assembly 108. The slips segments 114 eventually break apart and move radially outward so as to anchor with the surrounding tubular, and the seal ring 800 is deformed radially outward and pressed into sealing engagement with the surrounding tubular. Eventually, the shoe 110 and/or setting rod 106 release from engagement with the (remainder of) the downhole tool 100, and the setting tool 200 is withdrawn, leaving at least the slips assembly 108, the cone 102, and the seal ring 800 anchored in place in the surrounding tubular. Further, upon withdrawing the setting tool 200 from engagement with the cone 102, the obstructing member 300 may be released from its storage pocket 210, and received into the valve seat 302 provided by the cone 102, so as to prevent downhole-directed fluid flow past the downhole tool 100.
The seal ring 1000 may be positioned on a first taper 1016 of the cone 102. The first taper 1016 also extends into and engages the inside of the slips assembly 108, as discussed above, for purposes of wedging the slips assembly 108 radially outward during setting. The cone 102 may also have a second taper 1018, which may extend at a non-zero (e.g., obtuse) angle to the first taper 1016, as will be described in greater detail below.
As noted above, during setting, an axial force, applied by the setting tool 200 (e.g.,
The backup rings 1020, 1022 may be more rigid than the seal ring 1000 and may be configured to fracture as they are deformed radially outward by the relative movement of the cone 102 and the slips assembly 108. The backup rings 1020, 1022 may thus provide a preferential fracture point (i.e., a weak spot). The preferential fracture points of the backup ring 1020, 1022 may be circumferentially offset from one another, so as to avoid forming a continuous gap through which the seal ring 1000 may extrude. For example, as shown in
Referring again to
Referring now to
During this setting process, the slips assembly 108 may also press the seal ring 1000 axially along the first taper 1016 of the cone 102, e.g., with the force being transmitted through the backup rings 1020, 1022. The containment rings 1012, 1014 may likewise radially and/or axially deform during this process, permitting the central sealing element 1010 to form a fluid-tight seal with the surrounding tubular. Further, the backup rings 1020, 1022 may fracture, so as to permit radial expansion thereof.
Accordingly, the slips ring 1030 and the seal ring 1000 may be forced axially toward one another. In some cases, the slips ring 1030 and the seal ring 1000 may be pressed together during the setting process. In other cases, the slips ring 1030 and the sealing ring 1000 may be axially separated apart when the downhole tool 100 is fully set. In some embodiments, the slips ring 1030 may be prevented from moving past the second taper 1018 and onto the first taper 1016.
The seal ring 104 may be configured to directly engage the outer setting sleeve 202 of the setting tool 200 (e.g.,
The method 1400 may include connecting a setting rod 206 of a setting tool 200 to a shoe 110 of a downhole tool 100, as at 1402. When the setting tool 200 is connected to the downhole tool 100, a setting sleeve 202 of the setting tool 200 may engage a slips ring 1030 of the downhole tool 100. In an embodiment, the slips ring 1030 is positioned around a cone 102 of the downhole tool 100.
The method 1400 may also include deploying the setting tool 200 and the downhole tool 100 into a surrounding tubular (e.g., a casing, liner, or wellbore wall) in a well, as at 1404. Once the setting tool 200 and the downhole tool 100 have reached a desired setting location in the well, the method 1400 may include setting the downhole tool 100 in the well using the setting tool 200. In an embodiment, setting the downhole tool 100 may include pressing a first taper 1016 of the cone 102 into a slips assembly 108 of the downhole tool 100 by applying a force to the slips ring 1030, e.g., by pressing the setting sleeve 202 axially against the slips ring 1030. Applying the force to the slips ring 1030 drives the cone 102 to advance farther into the slips assembly 108, which in turn causes the first taper 1016 of the cone 102 to press the slips assembly 108 radially outward, so as to set the slips assembly 108 against the surrounding tubular. Further, applying the force causes the slips ring 1030 to slide along a second taper 1018 of the cone 102, toward the slips assembly 108, so as to press the slips ring radially outward.
In an embodiment, a seal ring 1000 is also pressed radially outward, e.g., by axial engagement with the slips assembly 108 (via backup rings 1020, 1022) while the cone 102 advances farther into the slips assembly 108. In a specific embodiment, the seal ring 1000 may be positioned around the first taper 1016 of the cone 102, such that advancing the cone 102 causes the first taper 1016 to advance relative to the seal ring 1000, resulting in the seal ring 1000 being pressed (e.g., deformed) radially outward into sealing engagement with the surrounding tubular.
As used herein, the terms “inner” and “outer”; “up” and “down”; “upper” and “lower”; “upward” and “downward”; “above” and “below”; “inward” and “outward”; “uphole” and “downhole”; and other like terms as used herein refer to relative positions to one another and are not intended to denote a particular direction or spatial orientation. The terms “couple,” “coupled,” “connect,” “connection,” “connected,” “in connection with,” and “connecting” refer to “in direct connection with” or “in connection with via one or more intermediate elements or members.”
The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This application claims priority to U.S. Provisional Patent Application No. 63/015,216, which was filed on Apr. 24, 2020, and is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63015216 | Apr 2020 | US |