Packers, bridge plugs, frac plugs, and other downhole tools may be deployed into a wellbore and set in place, e.g., to isolate two zones from one another in the wellbore. Generally, such setting is accomplished using a system of slips and seals received around a mandrel. A setting tool is used to axially compress the slips and sealing elements, and thereby radially expand them. The slips, which often have teeth, grit, buttons, or other marking structures, ride up the inclined surface of a cone during such compression, and are forced outwards into engagement with a surrounding tubular (e.g., a casing or the wellbore wall itself). This causes the slips to bite into the surrounding tubular, thereby holding the downhole tool in place. The seal is simultaneously expanded by such axial compression into engagement with the surrounding tubular, so as to isolate fluid communication axially across the tool.
The seals are typically elastomeric, and have a tendency to extrude during setting and/or when a large pressure differential across the seals is present, such as during hydraulic fracturing. In particular, the seals may extrude through a gap between circumferentially-adjacent slips, which forms when the slips are expanded radially outwards. To address this tendency, backup members are sometimes positioned axially between the slips and the seals to block these gaps and prevent extrusion. While such back-up rings are implemented with success in the field, they represent additional components and introduce failure points in the design. Accordingly, there is a need for downhole tools that avoid the drawbacks associated with rubber sealing elements.
Embodiments of the disclosure include an assembly including a cone having a tapered outer surface, a slips assembly positioned at least partially around the tapered outer surface of the cone, and a sealing ring positioned at least partially around the tapered outer surface of the cone. The slips assembly directly engages the sealing ring, such that the slips assembly is configured to transmit a setting force to the sealing ring, which moves the sealing ring on the tapered outer surface of the cone and expands the sealing ring radially outward. The assembly includes an anti-seal ring positioned adjacent to the sealing ring and around the cone. The anti-seal ring is driven along the tapered outer surface of the cone by engagement with the sealing ring.
Embodiments of the disclosure also include an assembly including a setting rod, a setting sleeve positioned around the setting rod, a mandrel coupled to the setting rod and defining a seat, a cone having a tapered outer surface, positioned around the mandrel, and in axial engagement with the setting sleeve, and a slips assembly positioned around the cone. The cone advancing into the slips assembly presses the slips assembly radially outward. The assembly also includes a sealing ring positioned around the cone and in axial engagement with the slips assembly, such that advancing the cone into the slips assembly causes the slips assembly to apply an axial force to the sealing ring. Advancing the cone into the slips assembly also advances the cone axially through the sealing ring and presses the sealing ring radially outward. The assembly further includes an anti-seal ring positioned around the cone and axially adjacent to the sealing ring, such that the sealing ring is axially between the anti-seal ring and the slips assembly.
Embodiments of the disclosure further include a downhole tool including a cone having a tapered outer surface, a slips assembly positioned at least partially around the tapered outer surface of the cone, and a sealing ring positioned at least partially around the tapered outer surface of the cone. The slips assembly directly engages the sealing ring, such that the slips assembly is configured to transmit a setting force onto the sealing ring, which moves the sealing ring on the tapered outer surface of the cone and expands the sealing ring radially outward. The tool also includes a mule shoe axially engaging the sealing ring, a mandrel extending through the cone, the slips assembly, and the sealing ring and connected to the mule shoe, and an anti-seal ring positioned adjacent to the sealing ring and around the cone. The anti-seal ring is driven along the tapered outer surface of the cone by engagement with the sealing ring.
The present disclosure may best be understood by referring to the following description and accompanying drawings that are used to illustrate embodiments of the invention. In the drawings:
The following disclosure describes several embodiments for implementing different features, structures, or functions of the invention. Embodiments of components, arrangements, and configurations are described below to simplify the present disclosure; however, these embodiments are provided merely as examples and are not intended to limit the scope of the invention. Additionally, the present disclosure may repeat reference characters (e.g., numerals) and/or letters in the various embodiments and across the Figures provided herein. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed in the Figures. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Finally, the embodiments presented below may be combined in any combination of ways, e.g., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.
Additionally, certain terms are used throughout the following description and claims to refer to particular components. As one skilled in the art will appreciate, various entities may refer to the same component by different names, and as such, the naming convention for the elements described herein is not intended to limit the scope of the invention, unless otherwise specifically defined herein. Further, the naming convention used herein is not intended to distinguish between components that differ in name but not function. Additionally, in the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to.” All numerical values in this disclosure may be exact or approximate values unless otherwise specifically stated. Accordingly, various embodiments of the disclosure may deviate from the numbers, values, and ranges disclosed herein without departing from the intended scope. In addition, unless otherwise provided herein, “or” statements are intended to be non-exclusive; for example, the statement “A or B” should be considered to mean “A, B, or both A and B.”
In general, embodiments of the present disclosure may provide a downhole tool, such as a plug, that has a sealing ring. The sealing ring may be made from a material that resists extruding past the slips assembly, e.g., in contrast to elastomeric (rubber) sealing elements. The sealing ring may be positioned around a cone, and between the cone and a slips assembly of the tool. When setting the tool, the sealing ring may be expanded radially outward into engagement with a surrounding tubular. Such engagement may result in sealing the tool in the surrounding tubular, and also may apply a gripping force onto the surrounding tubular, which tends to keep the downhole tool in place relative to the surrounding tubular. The slips of the downhole tool may bear directly against the sealing ring during setting, causing the sealing ring to move axially along the cone, which results in the aforementioned expansion of the sealing ring.
Turning now to the specific, illustrated embodiments,
The mandrel 102 may define an enlarged section 112 extending downward from the upper end 104 thereof. The mandrel 102 may also define a main section 114, which is radially smaller than the enlarged section 112. A shoulder 116 is defined at the transition between the main section 114 and the enlarged section 114. The shoulder 116 may be square or tapered. It will be appreciated that the mandrel 102 need not be a single, unitary piece, but may be two or more pieces that are coupled together.
The tool 100 may further include cone 120, a sealing ring 122, a slips assembly 124, and a mule shoe 126. Each of the cone 120, sealing ring 122, slips assembly 124, and mule shoe 126 may be received at least partially around main section 114 of the mandrel 102. The cone 120, sealing ring 122, and slips assembly 124 may be slidable on the mandrel 102, and the mule shoe 126 may be coupled (e.g., fixed) to the mandrel 102. For example, the mule shoe 126 may be threaded onto the lower end 106 of the mandrel 102. The mule shoe 126 may include upwardly-extending castellations 128, which may mesh with downwardly-extending castellations 129 of the slips assembly 124, thereby facilitating even load transmission therebetween.
The cone 120 may have a tapered outer surface 130, which extends radially outward as proceeding toward the upper end 104 of the mandrel 102. The cone 120 may also have a tapered inner surface section 131, e.g., extending to the upper end thereof, which extends radially outward as proceeding toward the upper end 104 of the mandrel 102. The tapered inner surface section 131 may extend at an angle of from about 1 degree, about 2 degrees, or about 3 degrees to about 7 degrees, about 8 degrees, or about 9 degrees. The shoulder 116 may define the same or a similar angle. Thus, the tapered inner surface section 131 and the shoulder 116 may engage along this angle. The engagement between the tapered inner surface section 131 of the cone 120 and the shoulder 116 of the mandrel 102 may prevent or at least resist the cone 120 from moving upward along the mandrel 102 during or after setting the tool 100.
Referring now additionally to
The sealing ring 122 may be made from a metal, a plastic (e.g. DELRIN®) or a composite (e.g., carbon-fiber reinforced material), e.g., rather than an elastomer. As such, in normal operating conditions, the sealing ring 122 may not extrude as a rubber sealing element might upon setting. Further, the sealing ring 122 may resist deforming, at least initially, which may prevent early setting of the tool 100, e.g., during run-in, prior to the tool 100 arriving at the desired depth in the wellbore. In a specific example, the sealing ring 122 may be made from a metal. For example, the metal may be magnesium, which may be dissolvable in the wellbore. In other embodiments, the sealing ring 122 may be made from other materials.
Further, at least a portion of the slips assembly 124 may be positioned around the tapered outer surface 130 of the cone 120. An upper axial end 140 of the slips assembly 124 may engage a lower axial end 134 of the sealing ring 122. In a specific embodiment, the upper axial end 140 may contact the lower axial end 134 with nothing in between, i.e., “directly engage” the lower axial end 134.
In the run-in configuration, the sealing ring 122 may have a first average thickness, in a radial direction. As shown, this radial thickness, combined with the relative positioning of the sealing ring 122 farther up on the cone 120 than the slips assembly 124, may result in the sealing ring 122 extending farther radially outward than the slips assembly 124.
When the tool 100 is deployed to a desired position within the wellbore, the tool 100 may be set in place.
To set the tool 100 (i.e., actuate the tool 100 from the run-in configuration of
By this combination of pushing and pulling, the mule shoe 126 is moved upward, while the cone 120 remains stationary or is moved downwards. As a consequence, the mule shoe 126 pushes the slips assembly 124 axially along the tapered outer surface 130 of the cone 120. This may expand, and in some embodiments, break the slips assembly 124 apart, such that the individual slips of the slips assembly 124 bite into the surrounding tubular (e.g., casing, liner, wellbore wall, etc.).
As this is occurring, the slips assembly 124, being pushed by the mule shoe 126, in turn pushes the sealing ring 122 up along the tapered outer surface 130 of the cone 120. This causes the annular sealing ring 122 to expand, e.g., by reducing in thickness. Eventually, the annular sealing ring 122 is pressed into engagement with the surrounding tubular, providing, e.g., a metal-to-metal or composite-to-metal seal therewith. Further, because the annular sealing ring 122 is entrained between the tapered outer surface 130 of the cone 120, the surrounding tubular, and the slips assembly 124 (as the annular sealing ring 122 may resist extruding between the slips of the slips assembly 124, unlike a rubber sealing element), the sealing ring 122 not only seals with the surrounding tubular, but may form a press-fit therewith, thereby providing an additional gripping force for the tool 100, in addition to that provided by the slips assembly 124. Moreover, back-up rings or other elements meant to prevent failure of the sealing element may be omitted, as the sealing ring 122 itself may have sufficient strength to resist undesired yielding failure. Similarly, a rubber sealing element may also be omitted.
The setting ring 122 illustrated in
The method 700 may include deploying a downhole tool 100 into a surrounding tubular (e.g., casing, liner, or the wellbore wall) of the wellbore, as at 702. At this point, the downhole tool 100 may be in a run-in configuration (e.g., as shown in
Once the downhole tool 100 is deployed to a desired depth in the wellbore, the method 700 may proceed to actuating the downhole tool 100 from the run-in configuration into a set configuration, as at 704. In an embodiment, actuating the downhole tool 100 may include pulling the mandrel 102 in an uphole direction, as at 706 and pushing the cone 120 in a downhole direction, as at 706. Pulling the mandrel 102 and pushing the cone 120 causes the slips assembly 124 to move the sealing ring 122 along the tapered outer surface 130 of the cone 120, thereby expanding the sealing ring 122 radially outward and into engagement with the surrounding tubular, as at 710.
In an embodiment, pulling the mandrel 102 and pushing the cone 120 causes the slips assembly 124 to expand radially outwards. Furthermore, actuating the downhole tool 100 from the run-in configuration into the set configuration causes the sealing ring 122 to form a metal-to-metal seal with the surrounding tubular. In some embodiments, the downhole tool 100 lacks a rubber sealing element that engages the surrounding tubular.
The sealing ring 122 may also include an outer surface 300 which may have a constant diameter. In such an embodiment, expanding the sealing ring 122 includes reducing a radial thickness of the sealing ring (e.g., the inner and outer diameters of the ring 122 may be increased, but the inner diameter may be increased more than the outer diameter).
In another embodiment, the outer surface 300 of the sealing ring 122 has two axially-separated peaks 404, 406 and a recessed section 402 between the two peaks 404, 406. In such an embodiment, expanding the sealing ring 122 may include deforming the two peaks 404, 406 as they engage the surrounding tubular.
In another embodiment, the sealing ring 122 is helical (either wound or with a helical cut or gap 500 formed therein). In such an embodiment, expanding the sealing ring 122 causes the sealing ring 122 to at least partially unwind.
In various embodiments, the sealing ring 122 may include a plurality of inserts 600. As such, expanding the sealing ring 122 may cause the plurality of inserts 600 to bite into the surrounding tubular.
The setting tool 802 generally includes a setting sleeve 806 and a setting rod 808 positioned at least partially within the setting sleeve 806. As shown, the setting rod 808 may be at least partially formed as a cylindrical sleeve, forming a hollow region 807 therein. The setting rod 808 and the setting sleeve 806 may be configured to slide relative to one another, e.g., by stroking a piston or in another manner in the well. The operation of the setting rod 808 and the setting sleeve 806 may be configured to impart a push-pull force coupling to the downhole tool 802, to set the downhole tool 802.
The downhole tool 804 may include a mandrel 810 that is connected to the setting rod 808 via a releasable connection made using, in a specific embodiment, shear pins 811. The mandrel 810 may be configured to remain in the well, while the setting tool 802 may be withdrawn from the downhole tool 804 and removed from the well subsequent to performing its setting function. Accordingly, the mandrel 810 may provide a seat 812, which may be configured to engage an obstructing member 814, e.g., a ball, as shown. The obstructing member 814, in some embodiments, may be deployed into the well along with the setting tool 802 and the downhole tool 804. In a specific embodiment, the obstructing member 814 may be contained within the setting rod 808, and axially between the seat 812 of the mandrel 810 and the setting rod 808.
The downhole tool 802 may also include a cone 816, an anti-seal ring 817, a sealing ring 818, and a slips assembly 819 positioned around the mandrel 810 and at least partially axially-adjacent to one another. In some embodiments, one or more other components may be interposed between any two of the components. A mule shoe 820 may be connected (e.g., threaded) to the mandrel 810 and positioned axially-adjacent to the slips assembly 819.
The cone 816 may have a tapered outer surface, which may be configured to wedge the anti-seal ring 817, sealing ring 818, and slips assembly 819 radially outwards when the cone 816 is advanced therein. Further, as shown in
The sealing ring 818 may include a base 826 and a sealing element 828. The sealing element 828 may be, for example, a rubber material that is configured to form a seal with a surrounding tubular (e.g., casing) during setting. The base 826 may be formed from a base material that is stronger than (resists deformation in comparison to) the material of the sealing element 828, e.g., a plastic such as DELRIN® or a thermoplastic (e.g., PEEK), a fiber-wound or filament-wound carbon-fiber material (composite), magnesium alloy, another metal, or another material. In a specific embodiment, the base 826 may provide a groove or another structure for receiving and connecting to the sealing element 828. Further, the sealing ring 818 may include an undercut portion 830, which may receive an end of the slips assembly 819. As such, the sealing ring 818 may overlap the slips assembly 819, e.g., to prevent premature expansion of the slips assembly 819 during run-in.
The anti-seal ring 817 may have an annular structure with an outer diameter that is smaller than the outer diameter of the sealing ring 818. The anti-seal ring 817 may thus be configured to avoid interfering with a seal forming between the sealing ring 818 and the surrounding tubular. Further, the sealing ring 818 may be made of a material that is stronger (resists deformation in comparison to) the base material of the base 826. The anti-seal ring 817 may be, for example, made from a plastic, such as thermoplastics, e.g., PEEK, a metal such as magnesium alloy, a fiber-wound or filament-wound composite (carbon fiber-reinforced material), or another material. The sealing ring 818 may be axially between the slips assembly 819 and the anti-seal ring 817. The anti-seal ring 817 may thus be configured to hold the sealing ring 818 in place during run-in and prevent early sealing or partial sealing with the surrounding tubular.
During setting, the setting sleeve 806 may apply the downward axial force on the cone 816, while the setting rod 808 applies an upward axial force on the mandrel 810, which is transmitted to the mule shoe 820. This combination may axially compress the components of the downhole tool 804, thereby causing the cone 816 to advance axially into the slips assembly 819, such that the cone 816 is wedged between the mandrel 810 and the slips assembly 819. The cone 816, having a tapered outer surface, advancing may thus press the slips assembly 819 radially outwards. As this occurs, the slips assembly 819 presses against the sealing ring 818, which is also pressed radially outwards by the advancing cone 816. The sealing ring 818 in turn engages and presses axially against the anti-seal ring 817, which is also pressed radially outwards by the advancing cone 816. The sealing ring 818 and the slips assembly 819, at least, may eventually be pressed sufficiently far radially outward so as to engage a surrounding tubular (e.g., casing).
At this point, the connection between the mandrel 810 and the setting rod 808 may release, and the setting tool 802 may be withdrawn. The mandrel 810 may remain in the well and may remain connected to the mule shoe 820 in at least some embodiments. For example, the mandrel 810 may provide a bore through which fluid may flow and the seat 812 for the obstructing member 814, so as to block fluid communication through the downhole tool 804 in at least one axial direction (e.g., downhole) via the bore.
As used herein, the terms “inner” and “outer”; “up” and “down”; “upper” and “lower”; “upward” and “downward”; “above” and “below”; “inward” and “outward”; “uphole” and “downhole”; and other like terms as used herein refer to relative positions to one another and are not intended to denote a particular direction or spatial orientation. The terms “couple,” “coupled,” “connect,” “connection,” “connected,” “in connection with,” and “connecting” refer to “in direct connection with” or “in connection with via one or more intermediate elements or members.”
The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This application is a continuation-in-part of U.S. patent application Ser. No. 16/695,316, filed on Nov. 26, 2019 and claiming priority to U.S. Provisional Patent Application Ser. No. 62/773,507, which was filed on Nov. 30, 2018. Each of these priority applications is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62773507 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16695316 | Nov 2019 | US |
Child | 17346530 | US |