1. Field of the Invention
The present invention relates generally to tools for conducting operations within passages, and specifically to tools for borehole intervention and/or drilling.
2. Description of the Related Art
U.S. Pat. No. 6,003,606, entitled “Puller-Thruster Downhole Tool,” discloses an innovative self-propelled tool or tractor for drilling, completion, stimulation, and intervention that pulls a drill string and simultaneously thrusts itself and its payload downhole and/or into a casing or borehole formation. The '606 patent discloses a tractor that includes one or more gripper assemblies (e.g., bladders or packerfeet) that grip onto an inner surface of a borehole or casing, and one or more propulsion assemblies that propel the tractor body forward when at least one of the gripper assemblies is gripping the borehole. A valve system directs a fluid (e.g., drilling mud, intervention fluid, hydraulic fluid) to and from the gripper assemblies and propulsion assemblies to power movement of the tractor.
The '606 patent discloses two basic types of tractor configurations—open loop and closed loop. The open loop system uses an externally provided fluid as a medium of hydraulic communication within the tractor. The open loop consists of a ground surface pump, tubing extending from the pump into a borehole, a tractor within the borehole and connected to the tubing, and an annulus between the exterior of the tractor and an inner surface of the borehole. The fluid is pumped down through the tubing to the tractor, used by the tractor to move and conduct other downhole operations, and then forced back up the borehole through the annulus. The tractor is powered by differential pressure—the difference of the pressure at the point of intake of fluid to the tractor and the pressure of fluid ejected from the tractor into the annulus. In the open loop system, a portion of the fluid is used to power the tractor's movement and another portion of the fluid flows through the tractor for various downhole purposes, such as hole cleaning, sand washing, acidizing, and lubricating of a drill bit (in drilling operations). Both portions of the fluid return to the ground surface through the annulus.
The '606 patent also discloses a closed loop configuration in which a hydraulic fluid is circulated through the gripper assemblies and propulsion assemblies to power the tractor's movement within the borehole. In particular,
U.S. Pat. Nos. 6,347,674; 6,241,031; and 6,679,341, as well as U.S. Patent Application Publication No. 2004/0168828, disclose alternative valve systems and methods for directing fluid to and from a downhole tractor's gripper assemblies and propulsion assemblies for moving the tractor.
In one aspect, a tool for moving within a passage is provided. The tool comprises an elongated body having an internal fluid chamber, at least one gripper assembly engaged with the body, a turbine, and a power transmission assembly. The body is configured to be secured to a fluid conduit so that a first fluid flowing through the conduit flows into the internal fluid chamber of the body. The gripper assembly has an actuated position in which the gripper assembly grips onto an inner surface of the passage to substantially limit relative movement between the gripper assembly and the inner surface. The gripper assembly also has a retracted position in which the gripper assembly permits substantially free relative movement between the gripper assembly and the inner surface of the passage. The turbine is configured to receive the first fluid flow through the internal fluid chamber, the turbine having an output shaft configured to rotate as the first fluid flows through the turbine. The power transmission assembly is configured to convert rotation of the output shaft into power for moving the gripper assembly to its actuated position.
In another aspect, a method of moving a tool within a passage is provided. In accordance with the method, an elongated body having an internal fluid chamber is provided. The body is secured to a fluid conduit so that a first fluid flowing through the conduit flows into the internal fluid chamber of the body. At least one gripper assembly is provided and engaged with the body. The gripper assembly has an actuated position in which the gripper assembly grips onto an inner surface of the passage to substantially limit relative movement between the gripper assembly and the inner surface. The gripper assembly also has a retracted position in which the gripper assembly permits substantially free relative movement between the gripper assembly and the inner surface of the passage. A turbine is provided, the turbine configured to receive the first fluid flow through the internal fluid chamber. The turbine has an output shaft configured to rotate as the first fluid flows through the turbine. A power transmission assembly is provided, the power transmission assembly being configured to convert rotation of the output shaft into power for moving the gripper assembly to its actuated position. Finally, the first fluid is pumped through the conduit into the internal fluid chamber of the body and through the turbine.
For purposes of summarizing the invention and the advantages achieved over the prior art, certain objects and advantages of the invention have been described herein above. Of course, it is to be understood that not necessarily all such objects or advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
All of these embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments of the present invention will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiments having reference to the attached figures, the invention not being limited to any particular preferred embodiment(s) disclosed.
When operated, the tractor 112 is configured to move within the borehole 132. This movement allows, for example, the tractor 112 to maintain a pre-selected force on the bottom hole assembly 120 such that the rate of movement or drilling can be controlled. The tractor 112 can be used to move various types of equipment through the borehole 132. For example, it will be understood that the tractor 112 can be connected with or include, without limitation, a downhole motor (for rotating a drill bit), steering system, instrumentation sub (an instrumented package that controls various aspects of downhole operation, including shock vibration, weight on bit, torque at bit, rate of penetration, downhole motor rpm, and differential pressure across motor), Measurement While Drilling apparatus (an apparatus for measuring gyroscopic data such as azimuth, inclination, and measured depth), drill bit, mechanical and hydraulic disconnect for intervention, jetting tools, production logging tools (including apparatus for measuring and recording, without limitation, temperature, annulus pressure, and various flow rates), drilling logging tools (for measuring and recording, without limitation, resistivity measurements, magnetic resonance (MRI), sonic neutron density, density, fluid identification, and gamma ray measurements), perforation guns, casing collar locators, and torque limiting tools (for drilling).
A closed loop configuration has relevant differences from an open loop system that operates on differential pressure (the difference in pressure between the bore of the tractor and the exterior of the tractor). With an open system, a restriction in the system is required to produce a pressure difference (decrease) between the interior and exterior of the tractor. Typically, the restriction is an orifice such as a fixed diameter nozzle, and is not capable of being adjusted from the surface. For typical coiled tubing rig operations, the effective means of control is to control the surface pump output flow rate. However, the differential pressure available at the tractor is a quadratic (non-linear) function of the surface pump output flow rate. Thus, doubling the surface pump output flow rate will increase the differential pressure through an in-series fixed orifice by a factor of four. This makes power control of the tractor more difficult as normal operational changes can have non-linear impact on tractor power, requiring additional features to be incorporated into the open loop powered tractor to restrict the amount of pressure delivered to the gripper assemblies, for example. Further, this has a disadvantage in that the normal operating range of the surface pump output flow rate required for various operations may have to be restricted, thus reducing cleaning efficiency during the operation.
Commercially available turbine-generators are sold by Spring Electronics of Worcestershire, United Kingdom. One turbine-generator sold by Spring Electronics comprises a three-phase alternator, rectifier, and switch mode power supply producing about 70 Watts at 50 volts. Larger versions of turbine-generators are commercially available.
The tool body defines an internal mud flow passage 224 inside the cylinders 207. The aft end of the tool body has an inlet 201 connected to coiled tubing 114 via a coiled tubing connector 206 (connection can be threaded or snapped together). While
In use, drilling/intervention fluid flows from the coiled tubing 114 into the inlet 201 of the tool body, and downhole (toward the bottom of the hole) through the mud flow passage 224. The fluid flows through the turbine 150, turning the motor 154. The fluid continues through the passage 224 into the BHA 204, exiting the BHA 204 through an outlet 203. The inlet 201 and outlet 203 are also shown in relation to the turbine 150 on the bottom right hand side of
The upper right hand side of
An advantage of the system using a turbine-powered motor as illustrated is that the system is flow-based, meaning that the downhole tractor can be more easily controlled by the surface pump that pumps fluid down into the coiled tubing toward the turbine. With a flow-based system, any change in the surface pump output volume flow rate linearly changes the power available to the tractor. Since the surface pump output flow rate can be relatively easily adjusted dynamically during tractor operation, the resulting adjustment of the power to the tractor provides enhanced control over the tractor's speed and pulling force. This enhanced control is available over a substantial operating range of surface pump output flow rates. This is convenient for some types of operations. For example, during sand washing it is desirable to provide a maximum amount of fluid into the borehole while the tractor continues its forward movement, usually at near-maximum pulling capacity.
Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications thereof. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above.
The present application incorporates by reference the entire disclosures of U.S. Pat. Nos. 6,003,606 (entitled “PULLER-THRUSTER DOWNHOLE TOOL”); 6,347,674 (“ELECTRICALLY SEQUENCED TRACTOR”); U.S. Pat. No. 6,241,031 (“ELECTRO-HYDRAULICALLY CONTROLLED TRACTOR”); U.S. Pat. No. 6,679,341 (“TRACTOR WITH IMPROVED VALVE SYSTEM”); U.S. Pat. No. 6,464,003 (“GRIPPER ASSEMBLY FOR DOWNHOLE TRACTORS”); and U.S. Pat. No. 6,715,559 (“GRIPPER ASSEMBLY FOR DOWNHOLE TRACTORS”). The present application also incorporates by reference the entire disclosures of U.S. Patent Application Publication Nos. 2004/0168828 (“TRACTOR WITH IMPROVED VALVE SYSTEM”); and 2005/0247488 (“ROLLER LINK TOGGLE GRIPPER AND DOWNHOLE TRACTOR”). The present application also incorporates by reference the entire disclosure of U.S. Provisional Patent Application No. 60/781,885, filed Mar. 13, 2006 (“EXPANDABLE RAMP GRIPPER”).