Downhole tool

Information

  • Patent Grant
  • 6659173
  • Patent Number
    6,659,173
  • Date Filed
    Tuesday, March 19, 2002
    22 years ago
  • Date Issued
    Tuesday, December 9, 2003
    21 years ago
Abstract
A tubing shoe (30) comprising: a body (32) for mounting on the end of a tubing string; and reaming members (36) extending longitudinally and helically around the body, the reaming members providing substantially complete circumferential coverage of the body whereby, in use, when the tubing shoe is advanced axially into a bore, the reaming members (36) provide reaming around the shoe circumference. A rotatable torque reducing sleeve or centraliser (38) may also be mounted on the body, rearwardly of the reaming members.
Description




FIELD OF THE INVENTION




This invention relates to a downhole tool, and in particular to a casing or liner shoe.




BACKGROUND OF THE INVENTION




In oil and gas exploration and production operations, bores are drilled to gain access to subsurface hydrocarbon-bearing formations. The bores are typically lined with steel tubing, known as tubing, casing and liner, depending upon diameter, location and function. Bores may also be lined with a filtration medium, such as slotted pipe or tube, or filtration media comprising a combination of two or more of slotted pipe or tubing, slotted screens or membranes and sand-filled screens. Embodiments of the present invention may be useful in some or all of these applications, and for brevity reference will generally made to “tubing”. The tubing is run into the drilled bore from the surface and suspended or secured in the bore by appropriate means, such as a casing or liner hanger. For casing, cement may then be introduced into the annulus between the tubing and the bore wall.




As the tubing is run into the bore the tubing end will encounter irregularities and restrictions in the bore wall, for example ledges formed where the bore passes between different formations and areas where the bore diameter decreases due to swelling of the surrounding formation. Further, debris may collect in the bore, particularly in highly deviated or horizontal bores. Accordingly, the tubing end may be subject to wear and damage as the tubing is lowered into the bore.




These difficulties may be alleviated by providing a “shoe” on the tubing end. Proposals for casing shoes of various forms are described in Canadian Patent No. 1,222,448, U.S. Pat. Nos. 2,334,788 and 4,825,947 and International Patent Application WO96\28635.




SUMMARY OF THE INVENTION




It is among the objectives of embodiments of the present invention to provide an improved tubing shoe.




According to the present invention there is provided a tubing shoe comprising a body for mounting on the lower end of rotatable tubing, and a rigid reaming portion comprising reaming members extending helically around the body towards the leading end thereof in an opposite direction to the intended direction of rotation of the tubing.




According to another aspect of the present invention there is provided a method of reaming a bore in preparation for receiving tubing, the method comprising the steps of:




mounting a tubing shoe on the lower end of tubing, the tubing shoe comprising a body and reaming members extending helically around the body towards the leading end thereof in one direction; and




running the tubing into a bore while rotating the tubing in the opposite direction to said one direction.




In use, these aspects of the present invention facilitate running in of tubing such as casing or liner which is supported or mounted such that it may be rotated as it is run into a bore: liner is typically run in on drill pipe, which may be rotated from surface as necessary; casing may be rotated using a top drive. In the interest of brevity, reference will be made herein primarily to liner. By providing reaming members which extend helically around the body in the opposite direction to the rotation of the liner, the reaming members do not tend to “bite” into obstructions in the bore wall; in conventional shoes provided with helical blades or flutes which extend in the same direction as the rotation of the liner the blades tend to engage obstructions, in a similar manner to a screw. In contrast, in the present invention, the members will tend to ride on or over any obstruction as the members ream the bore to the desired diameter to allow the liner to pass. This minimises the possibility of the shoe and liner becoming stuck fast in the bore due to the shoe becoming locked with a bore obstruction.




While the body and reaming portion are preferably substantially cylindrical, the leading end of each reaming member may define a pilot reaming portion defining a smaller diameter than a subsequent reaming portion. Most preferably, the reaming portions include a cutting or rasping surface or inserts on an outer surface of the portions, such as blocks or inserts of tungsten carbide, diamond or other hard material welded or otherwise fixed to the body or reaming members. The pilot and subsequent reaming portions of each reaming member may be helically aligned, or may be staggered. In a preferred embodiment, the reaming members are provided with inserts of hard material, such as tungsten carbide; testing has shown that such inserts provide more effective cutting and members provided with such inserts are harder wearing. It is believed that the ability to press the inserts into interference fit holes or slots avoids the stresses and other material property changes induced by welding blocks of tungsten carbide in place, and the inserts are spaced apart on the reaming members and are effectively self-cleaning, unlike traditional welded tungsten carbide blocks which require cleaning and often become “clogged”.




Each reaming member may include a stabilising portion, which may extend rearwardly of a reaming portion. Most preferably, the stabilising portion has a relatively smooth and hard wearing outer surface, for example of machined tungsten carbide. Alternatively, or in addition, a torque reducing sleeve or centraliser may be provided on the body rearwardly of the reaming portion. Preferably, the centraliser is spaced rearwardly of the reaming portion. Most preferably, the centraliser is rotatable relative to the body. In the preferred embodiment, the centraliser defines a bushing or sleeve, and one or more fluid conduits may carry fluid to provide lubrication between the bushing and the shoe body. In other embodiments the fluid conduits may be omitted. The centraliser may define raised helical flutes or blades. Preferably, the blades extend in the same direction as the intended direction of rotation of the shoe, that is in the opposite direction to the reaming members. In other embodiments the centraliser blades may extend in the same direction as the reaming members. The centraliser blades may include one or both of axial lead in and lead out portions, the portions facilitating relative axial movement of the centraliser relative to the bore wall. In other embodiments, the centraliser blades may be “straight”, that is extend solely axially.




Alternatively, or in addition, further torque reducing sleeves or centralisers may be provided rearwardly of the shoe or on the liner itself.




The trailing edge of each reaming member may define a back reaming portion, which back reaming portions may include a cutting or rasping surface, such as blocks or inserts of tungsten carbide or other hard material welded, located in bores, or otherwise fixed to the body. This feature is useful in shoes having a reduced diameter portion in which material may gather or become trapped, hindering retraction or withdrawal of the shoe. In the preferred embodiment of the invention there is little or no reduction in shoe body diameter following the reaming members, such that it is not necessary to provide the back reaming feature. Most conveniently, the shoe tapers towards the leading end thereof.




The body may define a fluid transmitting conduit in communication with fluid outlets located between the reaming members; due to the orientation of the members, the rotation of the shoe will not tend to clear cuttings and other material from the channels or flutes between the members, and passing fluid into the channels facilitates maintaining the channels clear of cuttings and the like. Most preferably, the fluid outlets are arranged to direct fluid rearwardly of the leading end of the shoe. Conveniently, at least adjacent fluid outlets are longitudinally offset, to minimise weakening of the shoe body. In other embodiments, such fluid outlets may be provided on a nose portion on the body, the outlets being arranged to direct fluid rearwardly towards or between the reaming members.




Preferably also, the body includes a nose portion, preferably an eccentric nose portion, that is the leading end of the nose portion is offset from the shoe axis. Most preferably, the nose portion is of a relatively soft material, for example an aluminium or zinc alloy, or indeed any suitable material, to allow the nose to be drilled out once the liner has been located in a bore. The nose portion may define one or more jetting ports, depending upon the desired flow rate of fluid from the nose portion. One or more jetting ports may be provided toward a leading end of the nose portion; in one preferred embodiment, a jetting port may be provided aligned with the shoe axis. One or more jetting ports may be provided toward a trailing end of the nose portion; in one preferred embodiment a plurality of spaced jetting ports are provided around a base of the nose portion and, in use, direct fluid rearwardly towards the reaming members. The one or more ports provided on the nose portion may open into respective recesses in the nose portion surface, to facilitate in the prevention of the jetting ports becoming blocked or plugged. In the preferred embodiment, the nose portion is rotatable relative to the body, to facilitate passage of the shoe over ledges and the like. Most preferably, the nose is rotatable only to a limited extent, for example through 130°; this facilitates the drilling or milling out of the nose. Of course, if the nose portion is not required to be drillable, the nose portion may be freely rotatable relative to the body. The nose may be biased towards a particular “centred” orientation by a spring or the like.




According to a further aspect of the present invention there is provided a tubing shoe comprising: a fluid transmitting body for mounting on the lower end of tubing; reaming members on the body; and fluid outlets for directing fluid towards or between the members.




Preferably, the fluid outlets are arranged to direct fluid rearwardly of the leading end of the shoe.




Preferably also, at least adjacent fluid outlets are longitudinally offset.




The fluid outlets may be provided in a nose located on the leading end of the shoe.




According to a still further aspect of the present invention there is provided a method of reaming a bore in preparation for receiving tubing, the method comprising the steps of:




mounting a tubing shoe on the lower end of tubing, the tubing shoe comprising a fluid transmitting body, reaming members on the body, and fluid outlets for directing fluid towards or between the members;




running the tubing into a bore; and




passing fluid through said outlets.




According to another aspect of the present invention there is provided a tubing shoe comprising a body for mounting on the lower end of tubing, and reaming members on the body, the leading end of each reaming member defining a pilot reaming portion defining a smaller diameter than a subsequent reaming portion.




Preferably, the reaming members each define a cutting or rasping surface, such as blocks or inserts of tungsten carbide or other hard material welded, held in bores or slots or otherwise fixed to the body. Most preferably, the reaming members extend helically around the outer surface of each member. Preferably also, the cutting or rasping surfaces of the reaming members combine to provide substantially complete coverage around the circumference of the body. Thus, even if there is no rotation of the shoe as it is advanced into a bore, there is cutting or rasping capability around the circumference of the bore and the bore is reamed to at least a minimum diameter corresponding to the diameter defined by the cutting or rasping surface.




According to another aspect of the present invention there is provided a tubing shoe comprising: a body for mounting on the end of a tubing string; and reaming members extending longitudinally and helically around the body, the reaming members providing substantially complete circumferential coverage of the body whereby, in use, when the tubing shoe is advanced axially into a bore, the reaming members provide reaming around the shoe circumference.




According to a further aspect of the present invention there is provided a method of clearing a bore to receive tubing, the method comprising:




mounting a tubing shoe on the end of a tubing string, the shoe having reaming members extending longitudinally and helically around the body, the reaming members providing substantially complete circumferential coverage of the body; and




advancing the tubing shoe axially into the bore, the reaming members provide reaming around the shoe circumference.




These aspects of the invention are of particular application in tubing shoes which are not subject to rotation during running in to a bore.




The inclination of the reaming members to the longitudinal axis of the shoe may be constant or may vary over the length of the members, for example the members may include portions parallel of perpendicular to the shoe longitudinal axis.




According to a further aspect of the present invention there is provided a tubing shoe comprising: a body for mounting on the end of a tubing string; and a nose rotatably mounted on the body.




Preferably, the nose is rotatable about a longitudinal axis.




Preferably also, the degree of rotation of the nose relative to the body is restricted, to facilitate drilling or milling through the nose.




According to a still further aspect of the present invention there is provided a tubing shoe comprising: a body for mounting on the end of a tubing string; and a torque reducing sleeve or centraliser on the body.




Preferably, the centraliser is rotatably mounted on the body. Most preferably, the body defines a fluid conduit and a bearing area between the centraliser and the body is in fluid communication with the conduit, to supply lubricating fluid to the bearing area.




Preferably also, the centraliser defines external blades or flutes. The blades may extend helically, and may include one or both of substantially axial lead in and lead out portions. Where the shoe includes reaming members, the centraliser blades may extend in the same or the opposite direction to the reaming members.




According to a yet further aspect of the present invention there is provided a tubing shoe comprising:




a body for mounting on the end of a tubing string; and




a rigid reaming portion comprising reaming members extending helically around the body and comprising inserts of relatively hard material on bearing surfaces of the reaming members.




The various aspects of the invention as described above may be manufactured and assembled by various methods. For example, the body and reaming members may be machined from a single billet. However, it is preferred that the body is formed of a single part on which a sleeve defining the reaming members is mounted. A centralising sleeve may also be provided for mounting on the body. Conveniently, the body defines a reduced diameter portion on which one or more sleeves are mounted. A rotating sleeve, such as a centraliser, may be retained by a locking ring or the like. A fixed sleeve, such as carries the reaming members, may be pinned to the body, and the pin may also serve to retain a nose portion on the body.




The various aspects of the invention as described above may be provided singly or in combination with one or more of the other aspects. Further, if desired the various aspects of the invention may be provided in combination with one or more of the optional or preferred features of the other aspects of the invention.











BRIEF DESCRIPTION OF THE DRAWINGS




These and other aspects of the present invention will now be described, by way of example, with reference to the accompanying drawings, in which:





FIG. 1

illustrates a liner shoe in accordance with a first embodiment of the present invention;





FIG. 2

illustrates a liner shoe in accordance with a second embodiment of the present invention;





FIGS. 3 and 4

are side and end views of the nose of the shoe of

FIG. 2

;





FIG. 5

illustrates a liner shoe in accordance with a third embodiment of the present invention;





FIG. 6

is an exploded view of the shoe of

FIG. 5

; and





FIG. 7

is an end view of a retaining ring of the shoe of FIG.


5


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Reference is first made to

FIG. 1

of the drawings, which illustrates a liner shoe in accordance with a first embodiment of the present invention. The shoe


10


has a hollow cylindrical body


12


adapted for mounting on the lower end of a length of bore liner (not shown). Typically, such mounting will be achieved by a conventional threaded box and pin type arrangement.




The body carries four reaming members extending helically around the body


12


towards the leading end of the body in the opposite direction to the intended direction of rotation of the liner: in the Figure, arrow A illustrates the direction of the reaming members


14


, while arrow B illustrates the direction of rotation of the shoe


10


in use.




The leading end of each reaming member


14


comprises a pilot reaming portion


16


and a following larger diameter reaming portion


18


. Rearwardly of the reaming portions


16


,


18


each reaming member


14


defines a stabilising portion


20


. Further, the trailing edge of each reaming member


14


defines a back reaming portion


22


. The reaming portions


16


,


18


,


22


are provided with an aggressive surface formed of blocks of tungsten carbide welded to the body


12


. However, each stabilising portion


20


has a relatively smooth outer surface formed of machined tungsten carbide.




As noted above, the body


12


is hollow and thus may carry a drilling fluid which is pumped from surface through the liner. Rearwardly directed jetting ports


24


communicate with the body bore such that, in use, drilling fluid is directed rearwardly, in the direction of arrow C, to clear cuttings from between the reaming members


14


.




A jetting port


26


is also provided in an eccentric nose portion


28


which is threaded onto the end of the body


12


. The nose portion


28


is formed of relatively soft aluminium alloy, such that it may be drilled out of the body


12


once a liner is in place, to provide a clear bore through the liner and the shoe


10


.




In use, the shoe


10


is mounted on the lower end of a length of liner, which is then run into a bore. The upper section of the bore will have been previously lined with steel casing, such that initial passage of the shoe and liner into the bore should be relatively straightforward. However, as the shoe


10


and the leading end of the liner move into the lower unlined part of the bore, the shoe


10


is likely to encounter ledges, deposits of cuttings, and other obstructions. These may be dislodged or pushed aside by the shoe


10


, or the fluid passing from the shoe


10


. However, on occasion it may be necessary to rasp or ream past an obstruction using the reaming members


14


. This may be achieved by rotating the liner and shoe


10


in the direction B such that the pilot reaming portions


16


and the reaming portions


18


rasp or ream the obstruction to an extent that the shoe


10


and the liner may pass. Due to the mass and dimensions of a typical section of liner, and the fact that the liner is suspended on relatively flexible drill pipe, it is often not possible to apply a significant torque to the shoe


10


. However, the action of the reaming portions


16


,


18


will normally be sufficient to overcome any obstructions. Further, the orientation of the reaming portions


16


,


18


ensure that the reaming members


14


ride over any obstructions and do not bite into the obstructions, as might occur if the members


14


were to extend in the opposite direction. In this example it may be observed that the reaming members


14


are “left handed”, that is the members


14


extend counter clockwise around the body


12


, as the shoe


10


is to be rotated in a clockwise direction. In some situations it may be sufficient to reciprocate the liner and shoe


10


axially to rasp or ream past an obstruction.




The provision of a pilot reaming portion


16


, and also the provision of a cutting or rasping surface over the surface of the reaming portions


16


,


18


, further minimise the possibility of the reaming members


14


jamming or locking against an obstruction.




As the configuration of the reaming members


14


is such that the rotation of the shoe


10


will not tend to dislodge cuttings and other debris from between the members


14


, the jetting ports


24


ensure that the channels between the members


14


remain clear.




Reference is now made to

FIGS. 2

,


3


and


4


of the drawings, which illustrate a casing shoe


30


in accordance with a second embodiment of the present invention. The shoe


30


has a generally cylindrical tubular body


32


adapted for mounting on the lower end of a string of casing or liner (not shown). A nose cone


34


is mounted on the leading end of the body


32


, and directly behind the nose on the body are a series of six reaming members


36


(the number of reaming members will typically be determined by the shoe diameter, that is, the larger the diameter the greater the number of members). A centraliser


38


is mounted on the body


32


rearwardly of and longitudinally spaced from the reaming members


36


.




The nose cone


34


is of generally frusto-conical form, with the nose leading end


40


being offset from the longitudinal axis of the shoe


42


. A central fluid conduit


44


in the nose communicates with the interior of the body and, in use, directs fluid to two smaller diameter conduits


46


,


48


which terminate at longitudinally and circumferentially spaced outlet ports


50


,


52


. The nose cone


34


is axially fixed but is rotatable through 146° relative to the body


32


, around the axis


42


. The nose cone


34


is located relative to the body


32


by pins


54


, each pin


54


having a threaded outer portion


56


for engaging a corresponding threaded bore


56


in the body


32


and an inner portion


58


for location in an annular groove


61


defined by a reduced diameter rear portion of the nose cone


60


. The groove


61


also accommodates springs (not shown) which tend to centre the cone in a predetermined position relative to the body


32


.




If reference is made in particular to

FIG. 4

, it will be noted that the interior of the rear portion of the nose cone


34


defines a series of radial slots


59


, which slots assist in the milling out of the nose cone


34


once the liner is in place; the relatively soft aluminium alloy from which the nose cone has been machined may tend to “smear” over a milling tool, and the slots facilitate the break-up of the cone and reduce the likelihood of such smearing.




The reaming members


36


are formed of an aggressive cutting material, such as tungsten carbide blocks, welded to the leading end of the body to define reaming blades. Each blade


36


comprises a leading pilot portion


63


which defines a taper extending rearwardly and helically from the nose cone


34


. Rearwardly of each pilot portion


63


is a larger diameter reaming portion


62


with tapering leading and trailing ends


64


,


66


, each reaming portion being spaced from but helically aligned with the respective pilot portion


63


. It should be noted that, as the leading end of each blade


36


overlaps longitudinally the trailing end of an adjacent blade


36


, the blades


36


collectively provide 360° coverage of the body.




Like the first described embodiment, fluid outlet ports


68


, which communicate with the interior of the body, are provided between the blades


36


. In this embodiment it will be noted that adjacent ports


68


are longitudinally offset, to minimise weakening of the body


32


.




The centraliser


38


is located at the longitudinal centre of the shoe


30


and comprises a bushing


70


defining five blades


72


, although the number of blades may be varied as desired. The bushing


70


is rotatable on the body and is located between a body shoulder


74


and a lock ring


76


. In use, two fluid conduits (not shown) carry fluid from the body interior to lubricate the bearing surfaces between the bushing


70


and the body


32


. The blades


72


each comprise a main helical portion


78


and axial leading and trailing portions


80


,


82


.




In use, the shoe


30


is mounted on the lower end of a casing string and run into a well bore. As the shoe


30


passes through the bore the nose


34


will tend to push aside any sand, cuttings and the like which have gathered in the bore, to allow the liner to pass. Any irregularities and intrusions in the bore wall will be rasped or reamed to the required diameter by the blades


36


. Due to the overlapping blade configuration, such rasping and reaming may be achieved solely by axial movement of the shoe


30


through the bore, and may be enhanced by rotating the shoe. As described above with reference to the first described embodiment, the blade configuration and orientation is such that, if the shoe is rotated, the blades


36


will tend to ride over and rasp or ream away any obstructions, rather than bite into the obstruction.




Rotation of the shoe, and the following liner string, is facilitated by the provision of the centraliser


38


, which acts as a rotary bearing between the shoe


30


and the bore wall. The configuration of the centraliser blades


72


also facilitates fluid flow past the shoe.




In the event of the shoe encountering a ledge or the like, the ability of the eccentric nose cone


34


to rotate relative to the body


32


facilitates negotiation of the ledge, as the nose


34


may “roll off” the ledge, particularly where the shoe itself is not rotating.




If, for any reason, it is deemed necessary to retract or withdraw the shoe


30


, the tapering of the shoe towards its leading end and the absence of any reduced diameter portions rearwardly of nose, such as occur rearwardly of the stabiliser portions


20


in the first described embodiment, facilitate such withdrawal. Retraction of the shoe should be possible without back reaming, which of course is not possible in applications where there is no facility to rotate the liner string.




Reference is now made to

FIGS. 5

,


6


and


7


of the drawings, which illustrate a casing shoe


100


in accordance with a third embodiment of the present invention. The shoe


100


has a generally cylindrical tubular body


102


having a reduced diameter leading end portion


104


which carries a centraliser


106


, a reamer sleeve


108


and a nose


110


, as will be described.




The centraliser


106


is substantially similar to the centraliser


38


described above, and will therefore not be described in any detail.




The reamer sleeve


108


comprises five helical reaming blades or members


112


of substantially constant radial extent. Each member


112


defines a row of blind bores


114


which retain a respective tungsten carbide insert


116


, in the illustrated example each member


112


having eight inserts


116


. The bores


114


are sized such that the inserts


116


may be pressed in, without requiring any welding and thus avoiding the corresponding stresses and material changes which welding induces.




A threaded pin


118


is used to lock the sleeve


108


to the body


102


, the inner end portion of the pin serving to retain the nose


110


on the end of the body


102


.




The nose


110


, like the nose cone


34


described above, is rotatable to a limited extent relative to the body and has a leading end offset from the shoe axis


119


. However, the configuration of the fluid outlet ports


120


,


122


of this embodiment are different, there being a single outlet port


120


aligned with the axis


119


for directing fluid forwards, and a series of circumferentially spaced ports


122


around the base of the nose


110


, the ports


122


opening into a circumferential groove


124


. In use, ports


122


direct fluid rearwardly over the reaming members


112


, to assist in maintaining the members


112


clear of debris.




It will be apparent to those of skill in the are that the configuration of the body


102


, sleeves


106


,


108


and nose


110


will facilitate manufacture and assembly of the shoe


100


, and provide for flexibility in manufacture, in that a single form of body


102


may accommodate centralisers and reamer sleeve having, for example, blades of different configurations, as desired.




It will be clear to those of skill in the art that the above-described embodiments are merely exemplary of the present invention, and that various modifications and improvements may be made thereto, without departing from the scope of the present invention.



Claims
  • 1. A tubing shoe comprising a body for mounting on the lower end of tubing, and a plurality of reaming members disposed on the body, each reaming member having a leading pilot reaming portion operative to ream a bore to a first diameter and a following gauge reaming portion operative to ream the bore to a second diameter larger than said first diameter, wherein the following gauge reaming portion is of a larger diameter than the pilot reaming portion.
  • 2. A tubing shoe comprising: a body for mounting on the lower end of tubing; and a plurality of discrete axially and circumferentially extending cutting surfaces of relatively hard material fixed to the body, the cutting surfaces being spaced apart and collectively providing substantially complete coverage around a circumference of the body, wherein the cutting surfaces are adapted to cut a bore in a workpiece upon axial reciprocation of the tubing shoe.
  • 3. The tubing shoe of claim 2, wherein said plurality of discrete axially and circumferentially extending cutting surfaces collectively define a plurality of reaming members.
  • 4. The tubing shoe of claim 3, wherein each of said plurality of reaming members extends helically around the body.
  • 5. The tubing shoe of claim 2, wherein each cutting surface comprises an outer surface of an insert of relatively hard material held in a bore in the body.
  • 6. A reamer shoe for mounting on a tubing string, the reamer shoe comprising a body and a plurality of reaming surfaces, each reaming surface having an abrasive cutting outer layer, wherein the plurality of reaming surfaces provide complete circumferential coverage of the body but each one of the plurality of reaming surfaces are non-continuous and do not fully extend either longitudinally along or circumferentially around the shoe body.
  • 7. A tubing shoe as claimed in claim 2, wherein the cutting surfaces are adapted to cut a bore in a workpiece upon axial reciprocation, without any rotation, of the tubing shoe through the workpiece.
Priority Claims (2)
Number Date Country Kind
9801494 Jan 1998 GB
9811852 Jun 1998 GB
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 09/446,930 filed Dec. 29, 1999, which claims priority of PCT Patent Application No. PCT/GB99/00093 filed Jan. 24, 1998, United Kingdom Patent Application No. 9801494.7 filed Jan. 24, 1998, and United Kingdom Patent Application No. 9811852.4 filed Jun. 2, 1998, which are incorporated herein by reference.

US Referenced Citations (10)
Number Name Date Kind
1786761 Little Dec 1930 A
2340406 Tiemann Feb 1944 A
3095644 Curry Jul 1963 A
3266577 Turner Aug 1966 A
4071101 Ford Jan 1978 A
4083612 Olson Apr 1978 A
5570742 Reynolds et al. Nov 1996 A
5697442 Baldridge Dec 1997 A
5740862 Sable Apr 1998 A
6062326 Strong et al. Mar 2000 A
Foreign Referenced Citations (8)
Number Date Country
0707131 Apr 1996 EP
2304755 Mar 1997 GB
WO 9100411 Jan 1991 WO
WO 9318274 Sep 1993 WO
WO 9505521 Feb 1995 WO
WO 9521986 Aug 1995 WO
WO 9628635 Sep 1996 WO
WO 9708423 Mar 1997 WO
Continuations (1)
Number Date Country
Parent 09/446930 US
Child 10/102459 US