A common problem encountered in drilling and servicing hydrocarbon wells is found when using an assembly of pipe sections which steps down in diameter to extend into a relatively smaller diameter borehole below the larger main casing section. For example, in a “drillstring,” or sets of tubing called a tubing string, a reduced diameter drillpipe and their threaded connections have lower torque specifications than a larger diameter drillpipe it may be connected to. It may therefore be desirable to limit the magnitude of the torque transferred to the reduced diameter section of drillpipe to prevent damage to the smaller pipe. As used herein, the term “torque” is used to refer to the turning force applied to an object measured in force-distance units.
Traditional downhole torque limiting systems employ shear pins or other elements, which are designed to fail when a specified torque is exceeded, allowing the pipe sections to rotate with respect to each other. To reset these devices, the tubing string must be removed from the well and the fractured pin replaced, which is undesirable and expensive. Alternatively, a weight may be inserted into the wellbore to reset the pipe sections, which is undesirable for other reasons.
Reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
In the drawings and descriptions that follow, like parts are typically marked throughout the specification and drawings with the same reference numerals, respectively. The drawn figures are not necessarily to scale. Certain features of the disclosure may be shown exaggerated in scale or in somewhat schematic form and some details of certain elements may not be shown in the interest of clarity and conciseness. The present disclosure may be implemented in embodiments of different forms.
Specific embodiments are described in detail and are shown in the drawings, with the understanding that the present disclosure is to be considered an exemplification of the principles of the disclosure, and is not intended to limit the disclosure to that illustrated and described herein. It is to be fully recognized that the different teachings of the embodiments discussed herein may be employed separately or in any suitable combination to produce desired results.
Unless otherwise specified, use of the terms “connect,” “engage,” “couple,” “attach,” or any other like term describing an interaction between elements is not meant to limit the interaction to a direct interaction between the elements and may also include an indirect interaction between the elements described. Unless otherwise specified, use of the terms “up,” “upper,” “upward,” “uphole,” “upstream,” or other like terms shall be construed as generally away from the bottom, terminal end of a well; likewise, use of the terms “down,” “lower,” “downward,” “downhole,” or other like terms shall be construed as generally toward the bottom, terminal end of the well, regardless of the wellbore orientation. Use of any one or more of the foregoing terms shall not be construed as denoting positions along a perfectly vertical axis. In some instances, a part near the end of the well can be horizontal or even slightly directed upwards. Unless otherwise specified, use of the term “subterranean formation” shall be construed as encompassing both areas below exposed earth and areas below earth covered by water such as ocean or fresh water.
Referring now to
A tubing string 160 is shown as having been lowered from the surface 130 into the wellbore 110. In some instances, the tubing string 160 may be a drillstring having a series of jointed lengths of tubing coupled together end-to-end and/or a continuous (e.g., not jointed) coiled tubing. The tubing string 160 may include one or more well tools, including a bottom hole assembly 170. The bottom hole assembly 170 can include, for example, a drill bit, a sand screen, a subsurface safety valve, a downhole sensor, an inflow control valve, a multilateral junction, a deflection wedge, or another type of production component. In the example shown, the wellbore 110 is being drilled. The wellbore 110 can be drilled in stages, and the casing 150 may be installed between stages. In some instances, the tubing string 160 is a completion string, a service string, coiled tubing, or another oilfield tubular. In one instance, the tubing string 160 is used to place a direction wedge for use in the construction of a multilateral junction.
In certain embodiments, there is a desire and/or need for a downhole torque limiter 180 associated with the tubing string 160. The downhole torque limiter 180, in some embodiments, may include a tubular housing and a pipe (e.g., mandrel, tubular, drill string, pup joint or any other oilfield tubular) positioned within the tubular housing. One or more clutch mechanisms may be positioned between the pipe and the tubular housing. The one or more clutch mechanisms may be configured to move between an engaged state (e.g., a radially engaged state in one embodiment) to fix the tubular housing relative to the pipe and a disengaged state (e.g., radially disengaged state in one embodiment) to allow with the tubular housing to rotate relative to the pipe. A fluid control system may be coupled with an exterior (e.g., radial exterior in one embodiment) side of the one or more clutch mechanisms, the fluid control system configured to allow the one or more clutch mechanisms to move from the engaged state to the disengaged state based upon sensing movement of the pipe relative to the tubular housing.
In some examples, the downhole torque limiter 180 may be set at a specified torque magnitude and then connected between a driver and a driven member, such as the tubing string 160 and the downhole assembly 170. The tubing string 160 may be placed in the wellbore 110 and rotated with the rotational force transmitted by the downhole torque limiter 180 until the specified torque is exceeded. When a pre-determined torque magnitude is reached, the tubing housing and pipe of the downhole torque limiter 180 will begin to rotate relative to one another, which will signal to the fluid control system to allow the one or more clutch mechanisms to move from the engaged state to the disengaged state. Accordingly, the one or more clutch mechanisms will disengage and slip to allow relative rotation between the tubing string 160 and the downhole assembly 170. The one or more clutch mechanisms may remain in the disengaged state until the rotation is stopped or at least the rotation rate is reduced. Once the rotation decreases, the downhole torque limiter 180 may reset without removing the tubing string 160 from the wellbore 110. When rotation recommences, the downhole torque limiter 180 may transmit rotational force up to the specified torque magnitude.
Turning to
The downhole torque limiter 200 has an upper driver end 210 and a lower driven end 220. Typically, upper driver end 210 and lower driven end 220 have threaded connections for making up the downhole torque limiter 200 within a tubing string, for example, a drill string. A central bore B (not shown in
Upper driver end 210, in one or more embodiments, is connected to upper section U by a threaded connection. In the illustrated example, the upper section U is connected to the surface rig and can be raised, lowered, and rotated thereby. Lower driven end 220 is connected to the reduced diameter lower section L. As is typical, a smaller diameter wellbore casing can be present, necessitating the use of the reduced diameter lower section L to access the smaller diameter wellbore casing. In the illustrated embodiment, the downhole torque limiter 200 connects upper U and lower L sections together and transmits rotational movement and torque to lower section L.
As will be explained in detail, the downhole torque limiter 200 can be set up to allow the upper driver end 210 and the lower driven end 220 to slip with respect to each other when the magnitude of the torque applied to downhole torque limiter 200 exceeds the preset limit. Thus, when the torque applied by an uphole rig while rotating upper section U exceeds a specified limit, the downhole torque limiter 200 will allow the upper driver end 210 and the lower driven end 220 to slip. According to a particular feature of the present invention, when rotation of the upper driver end 210 ceases or is reduced, the downhole torque limiter 200 will reset to condition where the ends no longer slip with respect to each other, and rotational movement and torque will be transferred to lower section L.
Referring now to
Referring now to
The downhole torque limiter 300 may include a fluid control system 430 fluidly coupled with an exterior E (e.g., radial exterior in one embodiment) of the piston assemblies 420, which may include one or more fluid chambers 435. The fluid control system 430 may be configured to allow the piston assemblies 420 to move from the engaged state to the disengaged state based upon sensing movement of the pipe 410 relative to the tubular housing 305. In the illustrated embodiment, the fluid control system 430 may include electronics 480 configured to sense movement of the pipe 410 relative to the tubular housing 305 and send a signal to the fluid control system 430 to regulate the fluid pressure in the exterior E, and thus allow or disallow relative movement.
In some embodiments, the piston assemblies 420 may be hydraulic pistons and fluid pressure in the exterior E may maintain the piston assemblies 420 in an engaged state with the pipe 410. In the illustrated embodiment, the piston assemblies 420 may further include a spring 425, which itself may resist a certain amount of torque between the tubular housing 305 and the pipe 410, such that the piston assemblies 420 remain engaged with the pipe 410.
The fluid control system 430 may include a hydraulic pump 440 in fluid connection with the exterior E, wherein the hydraulic pump 440 may be configured to control fluid pressure in the exterior E. In certain embodiments, the hydraulic pump 440 may further include a motor 445 and associated gearbox 450.
As shown in
Referring to
Referring back to
Turning now to
Turning now to
Turning now to
Other embodiments of a downhole torque limiter may utilize other components in conjunction with or in place of certain components disclosed herein. For example, other embodiments of a downhole torque limiter may utilize a solenoid valve and pump. In other embodiments, a downhole torque limiter may utilize a generator to supply power to embodiments of the electronics 480, wherein the generator may be driven by relative rotation of the pipe and housing. In yet other embodiments, the downhole torque limiter may use relative rotation within the downhole torque limiter to drive a mechanical pump for controlling fluid exterior to the one or more clutch mechanisms.
Aspects disclosed herein include:
A. A downhole torque limiter, the downhole torque limiter including: 1) a tubular housing; 2) a pipe positioned within the tubular housing; 3) one or more clutch mechanisms positioned between the pipe and the tubular housing, the one or more clutch mechanisms configured to move between a engaged state to fix the tubular housing relative to the pipe and a disengaged state to allow with the tubular housing to rotate relative to the pipe; and 4) a fluid control system coupled with an exterior of the one or more clutch mechanisms, the fluid control system configured to allow the one or more clutch mechanisms to move from the engaged state to the disengaged state based upon sensing movement of the pipe relative to the tubular housing.
B. A well system, the well system including: 1) a wellbore; 2) a tubing string positioned within the wellbore; 3) a torque limiter coupled with the tubing string, the torque limiter including: a) a tubular housing; b) a pipe positioned within the tubular housing; c) one or more clutch mechanisms positioned between the pipe and the tubular housing, the one or more clutch mechanisms configured to move between a engaged state to fix the tubular housing relative to the pipe and a disengaged state to allow with the tubular housing to rotate relative to the pipe; and d) a fluid control system coupled with an exterior of the one or more clutch mechanisms, the fluid control system configured to allow the one or more clutch mechanisms to move from the engaged state to the disengaged state based upon sensing movement of the pipe relative to the tubular housing.
C. A method for limiting torque in a well system, the method including: 1) running a downhole torque limiter into a wellbore, the downhole torque limiter coupled with at least a tubing string and including: a) a tubular housing; b) a pipe positioned within the tubular housing; c) one or more clutch mechanisms positioned between the pipe and the tubular housing, the one or more clutch mechanisms configured to move between a engaged state to fix the tubular housing relative to the pipe and a disengaged state to allow with the tubular housing to rotate relative to the pipe; and d) a fluid control system coupled with a exterior of the one or more clutch mechanisms, the fluid control system configured to allow the one or more clutch mechanisms to move between the engaged state to the disengaged state; e) wherein the fluid control system includes electronics configured to sense movement of the pipe relative to the tubular housing and send a signal to a hydraulic pump of the fluid control system; 2) sensing movement of the pipe relative to the tubular housing using the electronics; 3) sending a signal to the hydraulic pump to control fluid against a exterior of the one or more clutch mechanisms; and 4) controlling fluid against the exterior of the one or more clutch mechanisms to allow the one or more clutch mechanisms to move from the engaged state to the disengaged state.
Aspects A, B, and C may have one or more of the following additional elements in combination: Element 1: wherein each of the one or more clutch mechanisms includes a piston assembly. Element 2: wherein the piston assembly is held in the engaged state by fluid pressure against the exterior of the piston assembly. Element 3: wherein the piston assembly includes a spring, wherein the piston assembly is held in the engaged state by the spring. Element 4: wherein the fluid control system includes a hydraulic pump configured to control fluid pressure against the exterior of the one or more clutch mechanisms. Element 5: wherein the hydraulic pump reduces the fluid pressure against the exterior of the one or more clutch mechanisms to allow the one or more clutch mechanisms to move at least partially from the engaged state to the disengaged state. Element 6: wherein the hydraulic pump suctions the fluid from the exterior of the one or more clutch mechanisms to move the one or more clutch mechanisms to a substantially disengaged state. Element 7: further including a pressure relief valve configured to allow fluid from the exterior of the one or more clutch mechanisms to move to an interior of the of the one or more clutch mechanisms upon failure of the fluid control system and sensing a high-pressure situation. Element 8: further including a one-way check valve configured to allow fluid to move from the interior of the one or more clutch mechanisms to the exterior of one or more clutch mechanisms when the high-pressure situation has been relieved. Element 9: wherein the fluid control system includes electronics configured to sense movement of the pipe relative to the tubular housing and send a signal to a hydraulic pump of the fluid control system to allow the one or more clutch mechanisms to move from the engaged state to the disengaged state. Element 10: wherein the electronics includes an acoustic sensor configured to sense the movement of the pipe. Element 11: wherein the tubular housing includes an upper driver end and a lower driven end, wherein the upper driver end is fixed with respect to the pipe and the lower driven end engages and disengages with the pipe. Element 12: further including: a pressure relief valve configured to allow fluid from the exterior of the one or more clutch mechanisms to move to a disengaged interior of the of the one or more clutch mechanisms upon failure of the fluid control system and sensing a high-pressure situation; and a one-way check valve configured to allow fluid to move from the disengaged interior of the one or more clutch mechanisms to the exterior of one or more clutch mechanisms when the high-pressure situation has been relieved. Element 13: wherein the fluid control system includes electronics configured to sense movement of the pipe relative to the tubular housing and send a signal to a hydraulic pump of the fluid control system to allow the one or more clutch mechanisms to move from the engaged state to the disengaged state. Element 14: wherein the wherein the tubing string is a drillstring and wherein the tubular housing includes an upper driver end and a lower driven end, wherein the upper driver end is coupled with the drillstring and fixed with respect to the pipe and the lower driven end engages and disengages with the pipe. Element 15: further including a pressure relief valve configured to allow fluid from the exterior of the one or more clutch mechanisms to move to a disengaged interior of the of the one or more clutch mechanisms upon failure of the fluid control system and sensing a high-pressure situation. Element 16: further including a one-way check valve configured to allow fluid to move from the disengaged interior of the one or more clutch mechanisms to the exterior of one or more clutch mechanisms when the high-pressure situation has been relieved.
Those skilled in the art to which this application relates will appreciate that other and further additions, deletions, substitutions, and modifications may be made to the described embodiments.