The present invention relates to a downhole petroleum well tractor for conveying logging or intervention tools in the well. More specifically, the invention relates to an electrically driven downhole petroleum well tractor connected to a surface DC high voltage supply via an electrically conducting logging cable.
The invention is a downhole petroleum well tractor having a main body (0) connectable to an electrically conducting logging cable (5) from a surface high voltage DC power supply (50), wherein said main body (0) comprises a common power line (4) provided with energy supplied from said electrical cable (5), two or more drive motors (2) supplied with power from said common power line (4) each via a branch power line (40), each said drive motors (2) driving one or more drive devices (6) for running on and along a wall in a well for moving said tractor, and separate circuit breaker units (8) for each said drive motors (2) on said branch power line (40), said circuit breaker unit (8) arranged for monitoring a current (I) to said motor (2) and breaking said current (I) in case said current (I) exceeds a set current level (Imax).
The invention is also a method for preventing downhole petroleum well tractor failure, said tractor having a main body (0) connected to an electrically conducting logging cable (5) from a surface high voltage DC power supply (50), said main body (0) comprising a common power line (4) provided with energy supplied from said electrical cable (5), and two or more drive motors (2) supplied with power from said common power line (4) each via a branch power line (40), each said drive motors (2) driving one or more drive devices (6) running on and along a wall in a well and moving said tractor; wherein said method comprises continuously monitoring a current (I) on each said branch power line (40), and in case said current (I) on any one of said branch power line (40) exceeds a set current level (Imax), breaking said current (I) separately on said branch power line (40) by means of a circuit breaker unit (8) on said branch power line (40).
Further embodiments of the invention are defined in attached dependent claims.
An advantage of the invention is that by disconnecting the failed motor and motor drive it allows the remaining motors to function as normal and the whole tool can continue at reduced performance.
The invention is illustrated in the attached drawing Figures.
If one of the motors fails there is a risk that it may short the common high voltage power line unless the local current to the motor is broken. If the common high voltage power line is shorted then the tractor would fail and have to be pulled out of the well. Pulling the tractor would cause interruption of the logging procedure and cost additional time for retrieving the tractor and the conveyed logging string from the well, replacement or repair of the tractor and additionally the time for assembling and resuming running the tractor in the well.
The invention illustrated in
Thus, each said circuit breaker unit (8) is made for disconnecting its associated motor (2) in case said associated motor (2) fails, by detecting an increased current above the set current level, in order to prevent shorting said local HV branch power line (40) thus shorting said HV power line (4). Preventing such a short circuit of power maintains operation of the other motors (2) of the tractor in case one motor fails, resulting in continued operability of the tractor.
In a preferred embodiment of the invention, the drive motors (2) are high voltage brushless DC motors. In an embodiment of the invention, each said drive motor (2) comprises a motor drive electronic unit (21) connected to said separate local HV branch power line (40). The motor drive electronic unit (21) is a HV DC motor drive electronic unit (21). Such brushless motors are provided with an electronic motor drive unit (21) which shapes pulses for driving the motor in a desired direction and at a desired speed.
The electrical conductor logging cable (5) provides high voltage DC directly or indirectly to the common power line (4) in the tool. The surface high voltage DC power supply (50) may provide a voltage between on 300 V to 1800 V, but in an embodiment it provides up to 1200 V to the upper end of the logging cable (5) in order to provide a controlled working voltage of 600 V at the cable head to the common high voltage power line (4) at the tool, including its branch power lines (40). The surface DC power supply (50) must be adjusted for its voltage depending on the actually consumed current in the tractor so as for the voltage at the common high voltage power line (4) to be stable at 600V, but a sudden decrease in the consumed current may cause excursions of up to 1200 V at the electrical conductor logging cable (5). It is not desirable to use AC surface power supply because it would incur a considerable inductive resistance in the AC circuit comprising the very long cable in the well.
The motor drive units are provided with a 30 V input separate from the common high voltage power line (4), for control electronics.
In an embodiment of the invention, the circuit breaker (8) unit comprises control means (82, 86, 88) for monitoring said current (I) on said branch power line (40), and arranged for commanding a power switch (84) on said branch power line (40) to break if said current (I) exceeds said set current level (Imax). In the illustrated embodiment in
In an embodiment of the invention illustrated in
In an embodiment of the invention, the control means (82, 86, 88) is a low-voltage circuit operating on the high voltage side of said high voltage branch power line (40), such as having an internal low voltage level V e.g. 12 V below said high voltage of said HV branch power line (40), please see
In an embodiment of the invention, said HV current meter unit (82) may comprise a magnetic sensor current meter (82m) such as Hall effect sensor or a fluxgate magnetometer based device which measures the magnetic field about the conductor and thus indirectly measures the current on branch HV power line (40). Such a magnetic sensor current meter may operate without galvanic contact with the HV power line (40).
In a preferred embodiment of the invention, each motor (2) is connected via a transmission drivetrain (62) to said drive device (6). Each drive device (6) is preferably arranged on a drive arm (61) which may be hydraulically controlled to be forced against or retracted from the wall onto which the wheel drives. The transmission drivetrain may comprise pinion gears and a reduction gear arranged in said arm (61) as sketched in
The well tractor of the invention including its electric motors and said circuit breaker (8) is arranged for operating at well temperatures up to 180 degrees C. ambient temperature.
Stated more specifically, the invention may be defined as a downhole petroleum well tractor having a main body (0) connectable to an electrical conductor logging cable (5) from a surface high voltage DC power supply (50), characterized by said main body (0) comprising a common HV DC power line (4) provided with high-voltage DC power supplied from said electrical cable (5); two or more HV DC branch power lines (40) from said common HV DC power line (4), each said HV DC branch power line (40) feeding power to a HV motor drive electronic unit (21) for a drive motor (2); each said drive motors (2) driving one or more drive devices (6) such as wheels (6w) drive belts (6b) for running on and along a wall in a well for moving said tractor; separate HV DC circuit breaker units (8) on each said HV DC branch power line (40), each said HVDC circuit breaker (8) unit comprising control means (82, 86, 88) arranged for monitoring a current (I) on said HV DC branch power line (40) and controlling a HV DC power switch (84) on said HV DC branch power line (40) to break said current (I) if said current (I) exceeds said set current level (Imax). Each said HV circuit breaker unit (8) is arranged to disconnect its associated motor (2) in case of said associated motor (2) fails, by detecting an increased current above a set current level, in order to prevent shorting said HV power line (4), thus maintaining operation of the other motors (2) of the tractor. The electrical conductor logging cable (5) may be connected directly to said common power line (4).
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NO2014/000006 | 1/28/2014 | WO | 00 |