Downhole valve mechanism

Abstract
In one aspect of the invention, a downhole tool string component comprises a fluid passageway formed between a first and second end. A valve mechanism is disposed within the fluid passageway adapted to substantially cyclically build-up and release pressure within the fluid passageway such that a pressure build-up results in radial expansion of at least a portion of the fluid passageway and wherein a pressure release results in a contraction of the portion of the fluid passageway. The valve mechanism disposed within the fluid passageway comprises a spring. Expansion and contraction of the portion of the fluid passageway varies a weight loaded to a drill bit disposed at a drilling end of the drill string.
Description
BACKGROUND OF THE INVENTION

This invention relates to the field of downhole drill strings. Increasing the rate of penetration in drilling saves substantial amount of time and money in the oil and gas, geothermal, exploration, and horizontal drilling industries.


U.S. Pat. No. 6,588,518 to Eddison, which is herein incorporated by reference for all that it contains, discloses a downhole drilling method comprising the production of pressure pulses in drilling fluid using measurement-while-drilling (MWD) apparatus and allowing the pressure pulses to act upon a pressure responsive device to create an impulse force on a portion of the drill string.


U.S. Pat. No. 4,890,682 to Worrall, et al., which is herein incorporated by reference for all that it contains, discloses a jarring apparatus provided for vibrating a pipe string in a borehole. The apparatus thereto generates at a downhole location longitudinal vibrations in the pipe string in response to flow of fluid through the interior of said string.


U.S. Pat. No. 4,979,577 to Walter et al., which is herein incorporated by reference for all that it contains, discloses a flow pulsing apparatus adapted to be connected in a drill string above a drill bit. The apparatus includes a housing providing a passage for a flow of drilling fluid toward the bit. A valve which oscillates in the axial direction of the drill string periodically restricts the flow through the passage to create pulsations in the flow and a cyclical water hammer effect thereby to vibrate the housing and the drill bit during use. Drill bit induced longitudinal vibrations in the drill string can be used to generate the oscillation of the valve along the axis of the drill string to effect the periodic restriction of the flow or, in another form of the invention, a special valve and spring arrangement is used to help produce the desired oscillating action and the desired flow pulsing action.


BRIEF SUMMARY OF THE INVENTION

In one aspect of the invention, a downhole tool string component comprises a fluid passageway formed between a first and second end. A valve mechanism is disposed within the fluid passageway adapted to substantially cyclically build-up and release pressure within the fluid passageway such that a pressure build-up results in radial expansion of at least a portion of the fluid passageway and wherein a pressure release results in a contraction of the portion of the fluid passageway. The valve mechanism disposed within the fluid passageway comprises a spring. Expansion and contraction of the portion of the fluid passageway assisting in advancing the drill string within a subterranean environment. This advancing may be accomplished by varying a weight loaded to a drill bit, helping to propel the drill string along a horizontal well.


A spring is adapted to oppose the travel of a fluid flow. The spring is a tension spring or a compression spring. The spring is disposed intermediate a carrier and a centralizer and is aligned coaxially with the downhole tool string component. The valve mechanism comprises a shaft radially supported by a bearing and the centralizer. The carrier is mounted to the shaft. The centralizer is adapted to align the shaft coaxially with the downhole tool string component. The bearing is disposed intermediate the shaft and the centralizer. The carrier comprises at least one port. The carrier comprises a first channel formed on a peripheral edge substantially parallel with an axis of the tool string component.


The drilling fluid is adapted to push against a fluid engaging surface disposed on the carrier. The valve mechanism comprises an insert disposed intermediate and coaxially with the first end and the carrier. The centralizer and the insert are fixed within the fluid passageway. The insert comprises a taper adapted to concentrate the flow of the downhole tool string fluid into the carrier. The engagement of the fluid against the carrier resisted by the spring of the valve mechanism causes the first and second set of ports to align and misalign by oscillating the shaft. The insert further comprises a second channel on its peripheral edge. The valve mechanism comprises a fluid by-pass. The bit is adapted to cyclically apply pressure to the formation. The drill bit comprises a jack element with a distal end protruding from a front face of the drill bit and substantially coaxial with the axis of rotation of the bit.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective diagram of an embodiment of a string of downhole tools suspended in a borehole.



FIG. 2 is a cross-sectional diagram of an embodiment of a downhole tool string component.



FIG. 3
a is a cross-sectional diagram of another embodiment of a downhole tool string component.



FIG. 3
b is a cross-sectional diagram of another embodiment of a downhole tool string component.



FIG. 4 is a cross-sectional diagram of an embodiment of a downhole tool string component with a drill bit.



FIG. 5 is a cross-sectional diagram of another embodiment of a downhole tool string.



FIG. 6 is a cross-sectional diagram of another embodiment of a downhole tool string.



FIG. 7 is a perspective diagram of a tubular assembly.





DETAILED DESCRIPTION OF THE INVENTION AND THE PREFERRED EMBODIMENT


FIG. 1 is a perspective diagram of an embodiment of a string of downhole tools 100 suspended by a derrick 101 in a borehole 102. A bottom-hole assembly 103 may be located at the bottom of the borehole 102 and may comprise a drill bit 104. As the drill bit 104 rotates downhole the tool string 100 may advance farther into the earth. The drill string 100 may penetrate soft or hard subterranean formations 105. The bottom-hole assembly 103 and/or downhole components may comprise data acquisition devices which may gather data. The data may be sent to the surface via a transmission system to a data swivel 106. The data swivel 106 may send the data to the surface equipment. Further, the surface equipment may send data and/or power to downhole tools and/or the bottom-hole assembly 103. In some embodiments of the invention, no downhole telemetry system is used.



FIG. 2 is a cross-sectional diagram of an embodiment of a downhole tool string component 200 comprised of a first end 210 and a second end 211. The fluid passageway 201 may comprise a valve mechanism 202. The valve mechanism 202 may comprise a shaft 203 aligned coaxially with the downhole tool string component 200 by a centralizer 218. The valve mechanism 202 may also comprise a fluid by-pass 204. The valve mechanism 202 may also comprise a spring 205 adapted to oppose the travel of a fluid flow. The drilling fluid may follow a path indicated by the arrows 233. The spring 205 may be aligned coaxially with the downhole tool string component 200 and may be a compression spring or a tension spring. The valve mechanism 202 may also comprise a carrier 206 comprised of carrier ports 220 and a first channel 221. The valve mechanism 202 may also comprise an insert 207 disposed coaxially with the axis of the downhole tool string component 200. The insert 207 may comprise a set of insert ports 222 and a second channel 223. The insert 207 may comprise a taper 208 adapted to concentrate the flow of the drilling fluid into the carrier 206. The spring 205 may be adapted to resist the engagement of the fluid flow against the carrier 206. Without the fluid flow the ports may be misaligned due to the force of the spring. Once flow is added, the misaligned ports may obstruct the flow causing a pressure build-up. As the pressure increases the force of the spring may be overcome and eventual align the ports. Once the ports are aligned, the flow may pass through the ports relieving the pressure build-up such that the spring moves the carrier to misalign the ports. This cycle of aligning and misaligning the carrier ports 220 and insert ports 222 aids in the advancing the drill string within its subterranean environments. As both sets of ports 220,222 are misaligned, the pressure build up from the drilling fluid may cause the wall 230 of the downhole drill string component 200 to expand. As both sets of ports 220,222 are aligned, the pressure build up from the drilling fluid may be released as the drilling fluid is allowed to flow from the first channel 221, through the ports 220,222 and into the second channel 223. The shaft 203 and carrier 206 may be secured to each other by means of press-fitting the shaft 203 into the carrier 206 or shrink fitting the carrier 206 over the shaft 203. The shaft 203 may be allowed to move axially by a bearing 235 disposed intermediate the centralizer 218 and shaft 203.



FIG. 3
a shows a cross-sectional diagram of another embodiment of a downhole tool string component 200. With the ports 220 on the carrier 206 misaligned in relation to the ports 222 on the insert 207, the drilling fluid is allowed to build up within the fluid passageway 201 causing the walls 230 of the downhole drill string component 200 to expand radially outward.



FIG. 3
b shows a cross-sectional diagram of another embodiment of a downhole tool string component 200. With the ports 220 on the carrier 206 aligned with the ports 222 on the insert 207, the drilling fluid is allowed to pass from the first end 210 to the second end 211 (shown in FIG. 2), thus releasing the build up of pressure within the fluid passageway 201 and allowing the walls 230 of the downhole drill string component 200 to contract. As the pipe radially contracts, the pipe is believed to expand axially. This axial expansion is believed to increase the weight loaded to the drill bit and transfer a pressure wave into the formation. In some embodiments, the pressure relief above the valve will increase the pressure below the valve thereby pushing against the drill bit, further increasing the weight loaded to the drill bit. Also in some embodiments the affect of the oscillating valve's mass will fluctuate the weight loaded to the drill bit.



FIG. 4 shows a cross-sectional diagram of a downhole drill string component 200 with a drill bit 340. The drill bit 340 may be made in two portions. The first portion 305 may comprise at least the shank 300 and a part of the bit body 301. The second portion 310 may comprise the working face 302 and at least another part of the bit body 301. The two portions 305, 310 may be welded together or otherwise joined together at a joint 315.



FIG. 5 shows a perspective diagram of another embodiment of a downhole tool string component 200. In this embodiment, the downhole tool string component 200 may comprise a valve mechanism 202. The valve mechanism 202 may comprise a carrier 206 which may be comprised of at least one hole 405 disposed on the carrier 206. The at least one hole 405 may be disposed offset at least one port 410 disposed on a guide 411 such that drilling fluid is unable to pass from the first end 210 to second end 211 if the carrier 206 is against the guide 411. The drilling fluid may follow the path indicated by the arrow 233. The guide 411 may be secured to the walls 230 of the downhole drill string component 200 and may serve to align the shaft 203 axially with the downhole drill string component 200. A bearing 235 may be disposed intermediate the carrier 206 and the wall 230 of the downhole drill string component 200. The valve mechanism 202 may also comprise an insert 207 disposed intermediate the wall 230 of the downhole drill string component 200 and the shaft 203. A spring 205 may be disposed intermediate the insert 207 and the carrier 206 and coaxially with the downhole drill string component 200.



FIG. 6 shows a perspective diagram of another embodiment of a downhole tool string component 200. In this embodiment, the valve mechanism 202 may comprise a spring 205 disposed intermediate a carrier 206 and insert 207 and coaxially with the downhole tool string component 200. The insert 207 may comprise a set of ports 610 and a bearing 612 disposed intermediate a shaft 203 and the insert 207. The drilling fluid may follow the path indicated by the arrow 233.



FIG. 7 is a perspective diagram of a tubular assembly 2000 penetrating into a subterranean environment 2001. Preferable the tubular assembly 2000 is a drill string 100 (illustrated in FIG. 1) and comprises a bore for the passing drilling mud through. The tubular assembly may comprise a mechanism for contracting and expanding a diameter of the tubular assembly such that a wave is generated which travels along a length of the tubular assembly. This mechanism may be a valve mechanism such as the valve mechanism described in FIG. 2. In horizontal drilling applications the length 2003 of the tubular assembly may be engaged with the bore wall and waves 2002 may aid in moving the tubular assembly in its desired trajectory. In some embodiments of the present invention, the tubular assembly is not rotated such as in traditionally oil and gas exploration, but is propelling along its trajectory through the waves 2002.


The tubular assembly may be used in oil and gas drilling, geothermal operations, exploration, and horizontal drilling such as for utility lines, coal methane, natural gas, and shallow oil and gas.


In one aspect of the present invention a method for penetrating a subterranean environment includes the steps of providing a tubular assembly with a oscillating valve mechanism disposed within its bore, the valve mechanism comprising the characteristic such that as a fluid is passing through the valve, the valve will oscillate between an open and closed position; generating a wave along a length of the tubular assembly by radially expanding and contracting the tubular assembly by increasing and decreasing a fluid pressure by oscillating the valve mechanism; and engaging the length the tubular assembly such that the wave moves the tubular assembly along a trajectory.


In another aspect of the present invention a method for penetrating a subterranean environment comprises the steps of providing a tubular assembly with a mechanism disposed within its bore adapted to expand and contract a diameter of the tubular assembly; generating a wave along a length of the tubular assembly by radially expanding and contracting a diameter of the tubular assembly; and engaging the length the tubular assembly such that the wave moves the tubular assembly along a trajectory.


Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.

Claims
  • 1. A downhole tool string component, comprising: a fluid passageway being formed between a first and second end;a valve mechanism disposed within the fluid passageway adapted to substantially cyclically build-up and release pressure within the fluid passageway such that a pressure build-up results in radial expansion of at least a portion of the fluid passageway and wherein a pressure release results in a contraction of the portion of the fluid passageway,wherein the valve mechanism disposed within the fluid passageway comprises a spring;wherein the expansion and contraction of the portion of the fluid passageway assist in advancing the tool string component within a subterranean environment.
  • 2. The component of claim 1, wherein the advancing the tool string component within a subterranean environment includes varying a weight loaded to a drill bit.
  • 3. The component of claim 1, wherein the advancing the tool string component within a subterranean environment includes propelling the drill string along a horizontal well.
  • 4. The component of claim 1, wherein the spring is adapted to oppose the travel of a fluid flow.
  • 5. The component of claim 1, wherein the spring is a tension spring or a compression spring.
  • 6. The component of claim 1, wherein the spring is disposed intermediate a carrier and a centralizer.
  • 7. The component of claim 1, wherein the spring is aligned coaxially with the downhole tool string component.
  • 8. The component of claim 1, wherein the valve mechanism comprises a shaft radially supported by a bearing and a centralizer.
  • 9. The component of claim 8, wherein a carrier is mounted to the shaft.
  • 10. The component of claim 9, wherein the centralizer is adapted to align the shaft coaxially with the downhole tool string component.
  • 11. The component of claim 10, wherein the carrier comprises at least one port.
  • 12. The component of claim 11, wherein the carrier comprises a first channel formed on a peripheral edge substantially parallel with an axis of the tool string component.
  • 13. The component of claim 9, wherein drilling fluid is adapted to push against a fluid engaging surface disposed on the carrier.
  • 14. The component of claim 9, wherein the valve mechanism comprises an insert disposed intermediate and coaxially with the first end and the carrier.
  • 15. The component of claim 14, wherein the centralizer and the insert are fixed within the fluid passageway.
  • 16. The component of claim 15, wherein the insert comprises a taper adapted to concentrate the flow of the downhole tool string fluid into the carrier.
  • 17. The component of claim 15, wherein the engagement of the fluid against the carrier resisted by the spring of the valve mechanism causes a first and second set of ports to align and misalign by oscillating the shaft.
  • 18. The component of claim 17, wherein the insert further comprises a second channel on its peripheral edge.
  • 19. The component of claim 1, wherein the valve mechanism comprises a fluid by-pass.
  • 20. The component of claim 1, wherein the downhole tool string component comprises a drill bit that comprises a jack element with a distal end protruding from a front face of the drill bit and substantially coaxial with the axis of rotation of the bit.
CROSS REFERENCE TO RELATED APPLICATIONS

This Patent application is a continuation-in-part of U.S. patent application Ser. No. 12/037,682 that issued as U.S. Pat. No. 7,624,824 to Hall et al., on Dec. 1, 2009; which is a continuation-in-part of U.S. patent application Ser. No. 12/019,782 that issued as U.S. Pat. No. 7,617,886 to Hall et al., on Nov. 17, 2009; which is a continuation-in-part of U.S. patent application Ser. No. 11/837,321 that issued as U.S. Pat. No. 7,559,379 to Hall et al., on Jul. 14, 2009; which is a continuation-in-part of U.S. patent application Ser. No. 11/750,700 that issued as U.S. Pat. No. 7,549,489 to Hall et al., on Jun. 23, 2009. U.S. patent application Ser. No. 11/750,700 is a continuation-in-part of U.S. patent application Ser. No. 11/737,034 that issued as U.S. Pat. No. 7,503,405 to Hall et al., on May 17, 2009. U.S. patent application Ser. No. 11/737,034 is a continuation-in-part of U.S. patent application Ser. No. 11/686,638 that issued as U.S. Pat. No. 7,424,922 to Hall et al., on Sep. 16, 2008. U.S. patent application Ser. No. 11/686,638 is a continuation-in-part of U.S. patent application Ser. No. 11/680,997 that issued as U.S. Pat. No. 7,419,016 to Hall et al., on Sep. 2, 2008. U.S. patent application Ser. No. 11/680,997 is a continuation-in-part of U.S. patent application Ser. No. 11/673,872 that issued as U.S. Pat. No. 7,484,576 to Hall et al., on Feb. 3, 2009. U.S. patent application Ser. No. 11/673,872 is a continuation-in-part of U.S. patent application Ser. No. 11/611,310 that issued as U.S. Pat. No. 7,600,586 to Hall et al., on Oct. 13, 2009. This Patent Application is also a continuation-in-part of U.S. patent application Ser. No. 11/278,935 that issued as U.S. Pat. No. 7,426,968 to Hall et al., on Sep. 23, 2008. U.S. patent application Ser. No. 11/278,935 is a continuation-in-part of U.S. patent application Ser. No. 11/277,394 that issued as U.S. Pat. No. 7,398,837 to Hall et al., on Jul. 15, 2008. U.S. patent application Ser. No. 11/277,394 is a continuation-in-part of U.S. patent application Ser. No. 11/277,380 that issued as U.S. Pat. No. 7,337,858 to Hall et al., on Mar. 4, 2008. U.S. patent application Ser. No. 11/277,380 is a continuation-in-part of U.S. patent application Ser. No. 11/306,976 that issued as U.S. Pat. No. 7,360,610 to Hall et al., on Apr. 22, 2008. U.S. patent application Ser. No. 11/306,976 is a continuation-in-part of Ser. No. 11/306,307 that issued as U.S. Pat. No. 7,225,886 to Hall on Jun. 5, 2007. U.S. patent application Ser. No. 11/306,307 is a continuation-in-part of U.S. patent application Ser. No. 11/306,022 that issued as U.S. Pat. No. 7,198,119 to Hall et al., on Apr. 3, 2007: U.S. patent application Ser. No. 11/306,022 is a continuation-in-part of U.S. patent application Ser. No. 11/164,391 that issued as U.S. Pat. No. 7,270,196 to Hall on Sep. 18, 2007. This application is also a continuation-in-part of U.S. patent application Ser. No. 11/555,334 filed on Nov. 1, 2006 and that issued as U.S. Pat. No. 7,419,018 to Hall et al., on Sep. 2, 2008. All of these applications are herein incorporated by reference in their entirety.

US Referenced Citations (126)
Number Name Date Kind
616118 Kunhe Dec 1889 A
465103 Wagner Dec 1891 A
946060 Looker Jan 1910 A
1116154 Stowers Nov 1914 A
1183630 Bryson May 1916 A
1189560 Gondos Jul 1916 A
1360908 Everson Nov 1920 A
1387733 Midget Aug 1921 A
1460671 Hebsacker Jul 1923 A
1544757 Hufford Jul 1925 A
1821474 Mercer Sep 1931 A
1879177 Gault Sep 1932 A
2054255 Howard Sep 1936 A
2064255 Garfield Dec 1936 A
2169223 Christian Aug 1939 A
2218130 Court Oct 1940 A
2320136 Kammarer May 1943 A
2466991 Kammerer Apr 1949 A
2540464 Stokes Feb 1951 A
2544036 Kammerer Mar 1951 A
2746721 Moore May 1956 A
2755071 Kammerer Jul 1956 A
2776819 Brown Jan 1957 A
2819043 Henderson Jan 1958 A
2838284 Austin Jun 1958 A
2894722 Buttolph Jul 1959 A
2901223 Scott Aug 1959 A
2963102 Smith Dec 1960 A
3135341 Ritter Jun 1964 A
3294186 Buell Dec 1966 A
3301339 Pennebaker, Jr. Jan 1967 A
3379264 Cox Apr 1968 A
3429390 Bennett Feb 1969 A
3493165 Schonfield Feb 1970 A
3583504 Aahund Jun 1971 A
3764493 Rosar Oct 1973 A
3821993 Kniff Jul 1974 A
3955635 Skidmore May 1976 A
3960223 Kleine Jun 1976 A
4081042 Johnson Mar 1978 A
4096917 Harris Jun 1978 A
4106577 Summer Aug 1978 A
4176723 Arceneaux Dec 1979 A
4253533 Baker Mar 1981 A
4280573 Sudnishnikov Jul 1981 A
4304312 Larsson Dec 1981 A
4307786 Evans Dec 1981 A
4397361 Langford Aug 1983 A
4416339 Baker Nov 1983 A
4445580 Sahley May 1984 A
4448269 Ishikawa May 1984 A
4499795 Radtke Feb 1985 A
4531592 Hayatdavoudi Jul 1985 A
4535853 Ippolito Aug 1985 A
4538691 Dennis Sep 1985 A
4566545 Story Jan 1986 A
4574895 Dolezal Mar 1986 A
4615399 Schoeffler Oct 1986 A
4640374 Dennis Feb 1987 A
4817739 Jeter Apr 1989 A
4852672 Behrens Aug 1989 A
4889017 Fuller Dec 1989 A
4962822 Pascale Oct 1990 A
4979577 Walter Dec 1990 A
4981184 Knowlton Jan 1991 A
5009273 Grabinski Apr 1991 A
5027914 Wilson Jul 1991 A
5038873 Jurgens Aug 1991 A
5119892 Clegg Jun 1992 A
5141063 Quesenbury Aug 1992 A
5186268 Clegg Feb 1993 A
5222566 Taylor Jun 1993 A
5255749 Bumpurs Oct 1993 A
5265682 Russell Nov 1993 A
5361859 Tibbitts Nov 1994 A
5410303 Comeau Apr 1995 A
5417292 Polakoff May 1995 A
5423389 Warren Jun 1995 A
5443128 Amaudric du Chaffaut Aug 1995 A
5507357 Hult Apr 1996 A
5560440 Tibbitts Oct 1996 A
5568838 Struthers Oct 1996 A
5655614 Azar Aug 1997 A
5678644 Fielder Oct 1997 A
5732784 Nelson Mar 1998 A
5794728 Palmberg Aug 1998 A
5896938 Moeny Apr 1999 A
5947215 Lundell Sep 1999 A
5950743 Cox Sep 1999 A
5957223 Doster Sep 1999 A
5957225 Sinor Sep 1999 A
5967247 Pessier Oct 1999 A
5979571 Scott Nov 1999 A
5992547 Caraway Nov 1999 A
5992548 Silva Nov 1999 A
6021859 Tibbitts Feb 2000 A
6039131 Beaton Mar 2000 A
6131675 Anderson Oct 2000 A
6150822 Hong Nov 2000 A
6186251 Butcher Feb 2001 B1
6202761 Forney Mar 2001 B1
6213226 Eppink Apr 2001 B1
6223824 Moyes May 2001 B1
6269893 Beaton Aug 2001 B1
6296069 Lamine et al. Oct 2001 B1
6340064 Fielder Jan 2002 B2
6364034 Schoeffler Apr 2002 B1
6394200 Watson May 2002 B1
6439326 Huang Aug 2002 B1
6474425 Truax Nov 2002 B1
6484825 Watson Nov 2002 B2
6510906 Richert Jan 2003 B1
6513606 Krueger Feb 2003 B1
6533050 Molloy Mar 2003 B2
6594881 Tibbitts Jul 2003 B2
6601454 Botnan Aug 2003 B1
6622803 Harvey Sep 2003 B2
6668949 Rives Dec 2003 B1
6729420 Mensa-Wilmot May 2004 B2
6732817 Dewey May 2004 B2
6822579 Goswani Nov 2004 B2
9629076 Fanuel Apr 2005
6953096 Glenhill Oct 2005 B2
20030213621 Britten Nov 2003 A1
20040238221 Runia Dec 2004 A1
20040256155 Kriesels Dec 2004 A1
Related Publications (1)
Number Date Country
20080142263 A1 Jun 2008 US
Continuation in Parts (19)
Number Date Country
Parent 12037682 Feb 2008 US
Child 12039608 US
Parent 12019782 Jan 2008 US
Child 12037682 US
Parent 11837321 Aug 2007 US
Child 12019782 US
Parent 11750700 May 2007 US
Child 11837321 US
Parent 11737034 Apr 2007 US
Child 11750700 US
Parent 11686638 Mar 2007 US
Child 11737034 US
Parent 11680997 Mar 2007 US
Child 11686638 US
Parent 11673872 Feb 2007 US
Child 11680997 US
Parent 11611310 Dec 2006 US
Child 11673872 US
Parent 12039608 US
Child 11673872 US
Parent 11278935 Apr 2006 US
Child 12039608 US
Parent 11277394 Mar 2006 US
Child 11278935 US
Parent 11277380 Mar 2006 US
Child 11277394 US
Parent 11306976 Jan 2006 US
Child 11277380 US
Parent 11306307 Dec 2005 US
Child 11306976 US
Parent 11306022 Dec 2005 US
Child 11306307 US
Parent 11164391 Nov 2005 US
Child 11306022 US
Parent 12039608 US
Child 11306022 US
Parent 11555334 Nov 2006 US
Child 12039608 US