This invention relates to the field of downhole drill strings. Increasing the rate of penetration in drilling saves substantial amount of time and money in the oil and gas, geothermal, exploration, and horizontal drilling industries.
U.S. Pat. No. 6,588,518 to Eddison, which is herein incorporated by reference for all that it contains, discloses a downhole drilling method comprising the production of pressure pulses in drilling fluid using measurement-while-drilling (MWD) apparatus and allowing the pressure pulses to act upon a pressure responsive device to create an impulse force on a portion of the drill string.
U.S. Pat. No. 4,890,682 to Worrall, et al., which is herein incorporated by reference for all that it contains, discloses a jarring apparatus provided for vibrating a pipe string in a borehole. The apparatus thereto generates at a downhole location longitudinal vibrations in the pipe string in response to flow of fluid through the interior of said string.
U.S. Pat. No. 4,979,577 to Walter et al., which is herein incorporated by reference for all that it contains, discloses a flow pulsing apparatus adapted to be connected in a drill string above a drill bit. The apparatus includes a housing providing a passage for a flow of drilling fluid toward the bit. A valve which oscillates in the axial direction of the drill string periodically restricts the flow through the passage to create pulsations in the flow and a cyclical water hammer effect thereby to vibrate the housing and the drill bit during use. Drill bit induced longitudinal vibrations in the drill string can be used to generate the oscillation of the valve along the axis of the drill string to effect the periodic restriction of the flow or, in another form of the invention, a special valve and spring arrangement is used to help produce the desired oscillating action and the desired flow pulsing action.
In one aspect of the invention, a downhole tool string component comprises a fluid passageway formed between a first and second end. A valve mechanism is disposed within the fluid passageway adapted to substantially cyclically build-up and release pressure within the fluid passageway such that a pressure build-up results in radial expansion of at least a portion of the fluid passageway and wherein a pressure release results in a contraction of the portion of the fluid passageway. The valve mechanism disposed within the fluid passageway comprises a spring. Expansion and contraction of the portion of the fluid passageway assisting in advancing the drill string within a subterranean environment. This advancing may be accomplished by varying a weight loaded to a drill bit, helping to propel the drill string along a horizontal well.
A spring is adapted to oppose the travel of a fluid flow. The spring is a tension spring or a compression spring. The spring is disposed intermediate a carrier and a centralizer and is aligned coaxially with the downhole tool string component. The valve mechanism comprises a shaft radially supported by a bearing and the centralizer. The carrier is mounted to the shaft. The centralizer is adapted to align the shaft coaxially with the downhole tool string component. The bearing is disposed intermediate the shaft and the centralizer. The carrier comprises at least one port. The carrier comprises a first channel formed on a peripheral edge substantially parallel with an axis of the tool string component.
The drilling fluid is adapted to push against a fluid engaging surface disposed on the carrier. The valve mechanism comprises an insert disposed intermediate and coaxially with the first end and the carrier. The centralizer and the insert are fixed within the fluid passageway. The insert comprises a taper adapted to concentrate the flow of the downhole tool string fluid into the carrier. The engagement of the fluid against the carrier resisted by the spring of the valve mechanism causes the first and second set of ports to align and misalign by oscillating the shaft. The insert further comprises a second channel on its peripheral edge. The valve mechanism comprises a fluid by-pass. The bit is adapted to cyclically apply pressure to the formation. The drill bit comprises a jack element with a distal end protruding from a front face of the drill bit and substantially coaxial with the axis of rotation of the bit.
a is a cross-sectional diagram of another embodiment of a downhole tool string component.
b is a cross-sectional diagram of another embodiment of a downhole tool string component.
a shows a cross-sectional diagram of another embodiment of a downhole tool string component 200. With the ports 220 on the carrier 206 misaligned in relation to the ports 222 on the insert 207, the drilling fluid is allowed to build up within the fluid passageway 201 causing the walls 230 of the downhole drill string component 200 to expand radially outward.
b shows a cross-sectional diagram of another embodiment of a downhole tool string component 200. With the ports 220 on the carrier 206 aligned with the ports 222 on the insert 207, the drilling fluid is allowed to pass from the first end 210 to the second end 211 (shown in
The tubular assembly may be used in oil and gas drilling, geothermal operations, exploration, and horizontal drilling such as for utility lines, coal methane, natural gas, and shallow oil and gas.
In one aspect of the present invention a method for penetrating a subterranean environment includes the steps of providing a tubular assembly with a oscillating valve mechanism disposed within its bore, the valve mechanism comprising the characteristic such that as a fluid is passing through the valve, the valve will oscillate between an open and closed position; generating a wave along a length of the tubular assembly by radially expanding and contracting the tubular assembly by increasing and decreasing a fluid pressure by oscillating the valve mechanism; and engaging the length the tubular assembly such that the wave moves the tubular assembly along a trajectory.
In another aspect of the present invention a method for penetrating a subterranean environment comprises the steps of providing a tubular assembly with a mechanism disposed within its bore adapted to expand and contract a diameter of the tubular assembly; generating a wave along a length of the tubular assembly by radially expanding and contracting a diameter of the tubular assembly; and engaging the length the tubular assembly such that the wave moves the tubular assembly along a trajectory.
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.
This Patent application is a continuation-in-part of U.S. patent application Ser. No. 12/037,682 that issued as U.S. Pat. No. 7,624,824 to Hall et al., on Dec. 1, 2009; which is a continuation-in-part of U.S. patent application Ser. No. 12/019,782 that issued as U.S. Pat. No. 7,617,886 to Hall et al., on Nov. 17, 2009; which is a continuation-in-part of U.S. patent application Ser. No. 11/837,321 that issued as U.S. Pat. No. 7,559,379 to Hall et al., on Jul. 14, 2009; which is a continuation-in-part of U.S. patent application Ser. No. 11/750,700 that issued as U.S. Pat. No. 7,549,489 to Hall et al., on Jun. 23, 2009. U.S. patent application Ser. No. 11/750,700 is a continuation-in-part of U.S. patent application Ser. No. 11/737,034 that issued as U.S. Pat. No. 7,503,405 to Hall et al., on May 17, 2009. U.S. patent application Ser. No. 11/737,034 is a continuation-in-part of U.S. patent application Ser. No. 11/686,638 that issued as U.S. Pat. No. 7,424,922 to Hall et al., on Sep. 16, 2008. U.S. patent application Ser. No. 11/686,638 is a continuation-in-part of U.S. patent application Ser. No. 11/680,997 that issued as U.S. Pat. No. 7,419,016 to Hall et al., on Sep. 2, 2008. U.S. patent application Ser. No. 11/680,997 is a continuation-in-part of U.S. patent application Ser. No. 11/673,872 that issued as U.S. Pat. No. 7,484,576 to Hall et al., on Feb. 3, 2009. U.S. patent application Ser. No. 11/673,872 is a continuation-in-part of U.S. patent application Ser. No. 11/611,310 that issued as U.S. Pat. No. 7,600,586 to Hall et al., on Oct. 13, 2009. This Patent Application is also a continuation-in-part of U.S. patent application Ser. No. 11/278,935 that issued as U.S. Pat. No. 7,426,968 to Hall et al., on Sep. 23, 2008. U.S. patent application Ser. No. 11/278,935 is a continuation-in-part of U.S. patent application Ser. No. 11/277,394 that issued as U.S. Pat. No. 7,398,837 to Hall et al., on Jul. 15, 2008. U.S. patent application Ser. No. 11/277,394 is a continuation-in-part of U.S. patent application Ser. No. 11/277,380 that issued as U.S. Pat. No. 7,337,858 to Hall et al., on Mar. 4, 2008. U.S. patent application Ser. No. 11/277,380 is a continuation-in-part of U.S. patent application Ser. No. 11/306,976 that issued as U.S. Pat. No. 7,360,610 to Hall et al., on Apr. 22, 2008. U.S. patent application Ser. No. 11/306,976 is a continuation-in-part of Ser. No. 11/306,307 that issued as U.S. Pat. No. 7,225,886 to Hall on Jun. 5, 2007. U.S. patent application Ser. No. 11/306,307 is a continuation-in-part of U.S. patent application Ser. No. 11/306,022 that issued as U.S. Pat. No. 7,198,119 to Hall et al., on Apr. 3, 2007: U.S. patent application Ser. No. 11/306,022 is a continuation-in-part of U.S. patent application Ser. No. 11/164,391 that issued as U.S. Pat. No. 7,270,196 to Hall on Sep. 18, 2007. This application is also a continuation-in-part of U.S. patent application Ser. No. 11/555,334 filed on Nov. 1, 2006 and that issued as U.S. Pat. No. 7,419,018 to Hall et al., on Sep. 2, 2008. All of these applications are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
616118 | Kunhe | Dec 1889 | A |
465103 | Wagner | Dec 1891 | A |
946060 | Looker | Jan 1910 | A |
1116154 | Stowers | Nov 1914 | A |
1183630 | Bryson | May 1916 | A |
1189560 | Gondos | Jul 1916 | A |
1360908 | Everson | Nov 1920 | A |
1387733 | Midget | Aug 1921 | A |
1460671 | Hebsacker | Jul 1923 | A |
1544757 | Hufford | Jul 1925 | A |
1821474 | Mercer | Sep 1931 | A |
1879177 | Gault | Sep 1932 | A |
2054255 | Howard | Sep 1936 | A |
2064255 | Garfield | Dec 1936 | A |
2169223 | Christian | Aug 1939 | A |
2218130 | Court | Oct 1940 | A |
2320136 | Kammarer | May 1943 | A |
2466991 | Kammerer | Apr 1949 | A |
2540464 | Stokes | Feb 1951 | A |
2544036 | Kammerer | Mar 1951 | A |
2746721 | Moore | May 1956 | A |
2755071 | Kammerer | Jul 1956 | A |
2776819 | Brown | Jan 1957 | A |
2819043 | Henderson | Jan 1958 | A |
2838284 | Austin | Jun 1958 | A |
2894722 | Buttolph | Jul 1959 | A |
2901223 | Scott | Aug 1959 | A |
2963102 | Smith | Dec 1960 | A |
3135341 | Ritter | Jun 1964 | A |
3294186 | Buell | Dec 1966 | A |
3301339 | Pennebaker, Jr. | Jan 1967 | A |
3379264 | Cox | Apr 1968 | A |
3429390 | Bennett | Feb 1969 | A |
3493165 | Schonfield | Feb 1970 | A |
3583504 | Aahund | Jun 1971 | A |
3764493 | Rosar | Oct 1973 | A |
3821993 | Kniff | Jul 1974 | A |
3955635 | Skidmore | May 1976 | A |
3960223 | Kleine | Jun 1976 | A |
4081042 | Johnson | Mar 1978 | A |
4096917 | Harris | Jun 1978 | A |
4106577 | Summer | Aug 1978 | A |
4176723 | Arceneaux | Dec 1979 | A |
4253533 | Baker | Mar 1981 | A |
4280573 | Sudnishnikov | Jul 1981 | A |
4304312 | Larsson | Dec 1981 | A |
4307786 | Evans | Dec 1981 | A |
4397361 | Langford | Aug 1983 | A |
4416339 | Baker | Nov 1983 | A |
4445580 | Sahley | May 1984 | A |
4448269 | Ishikawa | May 1984 | A |
4499795 | Radtke | Feb 1985 | A |
4531592 | Hayatdavoudi | Jul 1985 | A |
4535853 | Ippolito | Aug 1985 | A |
4538691 | Dennis | Sep 1985 | A |
4566545 | Story | Jan 1986 | A |
4574895 | Dolezal | Mar 1986 | A |
4615399 | Schoeffler | Oct 1986 | A |
4640374 | Dennis | Feb 1987 | A |
4817739 | Jeter | Apr 1989 | A |
4852672 | Behrens | Aug 1989 | A |
4889017 | Fuller | Dec 1989 | A |
4962822 | Pascale | Oct 1990 | A |
4979577 | Walter | Dec 1990 | A |
4981184 | Knowlton | Jan 1991 | A |
5009273 | Grabinski | Apr 1991 | A |
5027914 | Wilson | Jul 1991 | A |
5038873 | Jurgens | Aug 1991 | A |
5119892 | Clegg | Jun 1992 | A |
5141063 | Quesenbury | Aug 1992 | A |
5186268 | Clegg | Feb 1993 | A |
5222566 | Taylor | Jun 1993 | A |
5255749 | Bumpurs | Oct 1993 | A |
5265682 | Russell | Nov 1993 | A |
5361859 | Tibbitts | Nov 1994 | A |
5410303 | Comeau | Apr 1995 | A |
5417292 | Polakoff | May 1995 | A |
5423389 | Warren | Jun 1995 | A |
5443128 | Amaudric du Chaffaut | Aug 1995 | A |
5507357 | Hult | Apr 1996 | A |
5560440 | Tibbitts | Oct 1996 | A |
5568838 | Struthers | Oct 1996 | A |
5655614 | Azar | Aug 1997 | A |
5678644 | Fielder | Oct 1997 | A |
5732784 | Nelson | Mar 1998 | A |
5794728 | Palmberg | Aug 1998 | A |
5896938 | Moeny | Apr 1999 | A |
5947215 | Lundell | Sep 1999 | A |
5950743 | Cox | Sep 1999 | A |
5957223 | Doster | Sep 1999 | A |
5957225 | Sinor | Sep 1999 | A |
5967247 | Pessier | Oct 1999 | A |
5979571 | Scott | Nov 1999 | A |
5992547 | Caraway | Nov 1999 | A |
5992548 | Silva | Nov 1999 | A |
6021859 | Tibbitts | Feb 2000 | A |
6039131 | Beaton | Mar 2000 | A |
6131675 | Anderson | Oct 2000 | A |
6150822 | Hong | Nov 2000 | A |
6186251 | Butcher | Feb 2001 | B1 |
6202761 | Forney | Mar 2001 | B1 |
6213226 | Eppink | Apr 2001 | B1 |
6223824 | Moyes | May 2001 | B1 |
6269893 | Beaton | Aug 2001 | B1 |
6296069 | Lamine et al. | Oct 2001 | B1 |
6340064 | Fielder | Jan 2002 | B2 |
6364034 | Schoeffler | Apr 2002 | B1 |
6394200 | Watson | May 2002 | B1 |
6439326 | Huang | Aug 2002 | B1 |
6474425 | Truax | Nov 2002 | B1 |
6484825 | Watson | Nov 2002 | B2 |
6510906 | Richert | Jan 2003 | B1 |
6513606 | Krueger | Feb 2003 | B1 |
6533050 | Molloy | Mar 2003 | B2 |
6594881 | Tibbitts | Jul 2003 | B2 |
6601454 | Botnan | Aug 2003 | B1 |
6622803 | Harvey | Sep 2003 | B2 |
6668949 | Rives | Dec 2003 | B1 |
6729420 | Mensa-Wilmot | May 2004 | B2 |
6732817 | Dewey | May 2004 | B2 |
6822579 | Goswani | Nov 2004 | B2 |
9629076 | Fanuel | Apr 2005 | |
6953096 | Glenhill | Oct 2005 | B2 |
20030213621 | Britten | Nov 2003 | A1 |
20040238221 | Runia | Dec 2004 | A1 |
20040256155 | Kriesels | Dec 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20080142263 A1 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12037682 | Feb 2008 | US |
Child | 12039608 | US | |
Parent | 12019782 | Jan 2008 | US |
Child | 12037682 | US | |
Parent | 11837321 | Aug 2007 | US |
Child | 12019782 | US | |
Parent | 11750700 | May 2007 | US |
Child | 11837321 | US | |
Parent | 11737034 | Apr 2007 | US |
Child | 11750700 | US | |
Parent | 11686638 | Mar 2007 | US |
Child | 11737034 | US | |
Parent | 11680997 | Mar 2007 | US |
Child | 11686638 | US | |
Parent | 11673872 | Feb 2007 | US |
Child | 11680997 | US | |
Parent | 11611310 | Dec 2006 | US |
Child | 11673872 | US | |
Parent | 12039608 | US | |
Child | 11673872 | US | |
Parent | 11278935 | Apr 2006 | US |
Child | 12039608 | US | |
Parent | 11277394 | Mar 2006 | US |
Child | 11278935 | US | |
Parent | 11277380 | Mar 2006 | US |
Child | 11277394 | US | |
Parent | 11306976 | Jan 2006 | US |
Child | 11277380 | US | |
Parent | 11306307 | Dec 2005 | US |
Child | 11306976 | US | |
Parent | 11306022 | Dec 2005 | US |
Child | 11306307 | US | |
Parent | 11164391 | Nov 2005 | US |
Child | 11306022 | US | |
Parent | 12039608 | US | |
Child | 11306022 | US | |
Parent | 11555334 | Nov 2006 | US |
Child | 12039608 | US |