This present disclosure relates generally to techniques for performing wellsite operations. More specifically, the present disclosure relates to downhole equipment, such as drilling tools.
Oilfield operations may be performed to locate and gather valuable downhole fluids. Oil rigs are positioned at wellsites, and downhole equipment, such as a drilling tool, is deployed into the ground by a drill string to reach subsurface reservoirs. At the surface, an oil rig is provided to deploy stands of pipe into the wellbore to form the drill string. Various surface equipment, such as a top drive, a Kelly and a rotating table, may be used to apply torque to the stands of pipe and threadedly connect the stands of pipe together. A drill bit is mounted on the downhole end of the drill string, and advanced into the earth from the surface to form a wellbore.
A bottom hole assembly (BHA) is provided along the drill string. The BHA may be provided with various downhole components, such as measurement while drilling, logging while drilling, telemetry, motors, and/or other downhole tools, to perform various downhole operations, such as providing power to the drill bit to drill the wellbore. Examples of BHAs or downhole components are provided in U.S. Patent/Applications Nos. US Patent/Application Nos. 2015/003438, 2009/0223676, 2011/0031020, U.S. Pat. Nos. 7,419,018, 6,431,294, 6,279,670, and 4,428,443, and PCT Application NO. WO2014/089457 the entire contents of which are hereby incorporated by reference herein.
In at least one aspect, the disclosure relates to a vibration assembly for a downhole tool positionable in a subterranean formation. The vibration assembly includes a vibration race positioned in the downhole tool, the vibration race having a non-planar engagement surface. The vibration assembly also includes an additional race positioned in the downhole tool a distance from the vibration race. The additional race has another engagement surface facing the non-planar engagement surface of the vibration race. The vibration assembly also includes a cage positioned between the vibration race and the additional race and rollers positionable in the cage. The rollers are rollably engageable with the non-planar engagement surface and the another engagement surface to vary the distance between the vibration race and the additional race whereby axial movement is provided in the downhole tool.
The additional race may be a bearing race and the another engagement surface may be a planar engagement surface. The additional race may be another vibration race having another non-planar surface which may be identical to or different from the vibration race.
The vibration race, the additional race, and the cage may be ring-shaped members with a passage extending therethrough. The cage may have roller holes to receive the rollers therein. The rollers may be cylindrical, spherical, and/or frusto-conical.
The non-planar engagement surface may be a wavy surface extending radially about the vibration race. The non-planar engagement surface may be a circular channel extending into an inner surface of the vibration race. The circular channel may have a non-smooth surface. The non-planar engagement surface may have peaks and valleys in a smooth, curved, a sinusoidal, a stepped, a ramped, a symmetric, and/or an asymmetric configuration. The vibration race and the additional race may have connector holes to receive connectors therethrough for connection to the downhole tool.
In another aspect, the disclosure relates to a downhole tool positionable in a subterranean formation. The downhole tool includes a conveyance and a bottomhole assembly supported by the conveyance. The bottomhole assembly may include a housing and a vibration assembly. The vibration assembly may include a vibration race positioned in the downhole tool. The vibration race has a non-planar engagement surface. The vibration assembly also includes an additional race positioned in the downhole tool a distance from the vibration race. The additional race has another engagement surface facing the non-planar engagement surface of the vibration race. The vibration assembly also includes a cage positioned between the vibration race and the additional race, and rollers positionable in the cage. The rollers are rollably engageable with the non-planar engagement surface and the another engagement surface to vary the distance between the vibration race and the additional race whereby axial movement is provided in the downhole tool.
The conveyance may be a drill string and the bottomhole assembly may include a motor assembly, a bearing assembly, and a drill bit. The vibration assembly may be positioned in the bearing assembly. The bottomhole assembly may include a drive portion, an adjustment portion, and a bearing assembly. The vibration assembly may be positioned in the bearing assembly. The bearing assembly may include a crossover housing, bearing housings, and a bearing mandrel.
The bottomhole assembly may include an adjustment portion, and a bearing assembly. The adjustment portion may include a bearing housing and a bearing mandrel. The vibration assembly may be positioned between the bearing housing and the bearing mandrel. The adjustment portion may include a lock housing and an adjustment ring.
In another aspect, the present disclosure relates to a method of drilling a wellbore penetrating a subterranean formation. The method involves advancing a downhole tool with a vibration assembly into the subterranean formation. The vibration assembly may include a vibration race positioned in the downhole tool. The vibration race may have a non-planar engagement surface and an additional race positioned in the downhole tool a distance from the vibration race. The additional race may have another engagement surface facing the non-planar engagement surface of the vibration race. The vibration assembly may also include a cage positioned between the vibration race and the additional race, and rollers positionable in the cage in engagement with the non-planar engagement surface and the another engagement surface. The method also involves generating axial movement in the downhole tool by rotating the rollers along the non-planar engagement surface of the vibration race.
The generating may also involve varying the distance between the vibration race and the additional race by rotating the rollers along the non-planar engagement surface of the vibration race.
So that the present disclosure can be understood in detail, a more particular description of the invention may be had by reference to the embodiments thereof that are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate example embodiments and are, therefore, not to be considered limiting of its scope. The figures are not necessarily to scale and certain features, and certain views of the figures may be shown exaggerated in scale or in schematic in the interest of clarity and conciseness.
The description that follows includes exemplary apparatuses, methods, techniques, and/or instruction sequences that embody techniques of the present subject matter. However, it is understood that the described embodiments may be practiced without these specific details.
The present disclosure relates to a downhole drilling tool including a bottomhole assembly (BHA) with a drill bit at an end thereof. The BHA also includes a downhole motor with a vibration assembly including races (e.g., a bearing race and/or a vibration race), a cage (or roller bearing), and rollers. The races may have various engagement surfaces (e.g., waves) along the races engageable by the rollers. A width of the vibration assembly varies as the rollers roll along the wavy (or curved) engagement surface of the vibration race to selectively extend and retract the BHA. The waves along the engagement surface may be defined to create movement (e.g., axial vibration) about the downhole tool. Such movement may be used, for example, to facilitate drilling and/or to prevent potentially damaging drilling effects, such as bit whirl, sticking and/or lateral vibration.
The surface equipment 101 may include various rig equipment 108, such as a Kelly, rotary table, top drive, elevator, etc., provided at the rig 103 to operate the subsurface equipment 102. A mud pit 109 may be provided as part of the surface equipment 101 for passing mud from the surface equipment 101 and through the subsurface equipment 102. Various flow devices, such as a pump may be used to manipulate the flow of mud about the wellsite 100.
The subsurface equipment 102 may include a downhole drilling tool 105 including a drill string 110 with a bottom hole assembly (BHA) 112 and a drill bit 114 at an end thereof. Fluid from the mud pit 109 may be passed through the drill string 110, BHA 112, and out drill bit 114 as the drill bit 114 is advanced into the formation 104 to form the wellbore 106.
The drill string 110 may include drill pipe, drill collars, tool joints, coiled tubing, and/or other tubulars used in drilling operations. The BHA 112 is at a lower end of the drill string 110 and contains various downhole components for performing downhole operations. As shown, the BHA 112 includes a motor assembly 115, a bearing assembly 116, and a vibration assembly 118.
The motor assembly 115 may be any motor usable to drive the drill bit 114, such as a fluid-driven drilling motor including a rotor and a stator and/or an electric motor. Examples of drilling motors are provided in U.S. Pat. No. 7,419,018, previously incorporated by reference herein. The bearing assembly 116 may be positioned between the motor assembly 115 and the drill bit 114, and have the vibration assembly 118 incorporated therein. The bearing assembly 116 may be configured for retrofitting with any conventional BHA, motor assembly, and/or drill bit.
The BHA 112 may also include various other downhole components, such as stabilizers, reamers, measurement tools (e.g., measurement while drilling tool, logging while drilling tool, gauges, etc.), communication devices (e.g., a telemetry unit), rotary steerables, and/or other downhole components. For example, the BHA 112 may include downhole components, such as a pulser, a shock tool, and/or other motion components, capable of generation motion. Examples of pulsers are provided in U.S. Pat. No. 6,279,670 and 2015/003438, previously incorporated by reference herein. An example pulser that may be used is the AGITATOR™ commercially available at www.nov.com. Examples of shock tools that may be used include the BLACK MAX MECHANICAL SHOCK TOOL™ or a GRIFFITH™ shock tool (e.g., 6¾″ (17.14 cm) with a pump open area of 17.7 in2 (114.19 cm2) commercially available at www.nov.com.
The vibration assembly 118 and/or at least one other motion component may be used to provide movement, such as axial movement, of the downhole tool 105 as indicated by the double arrow. The movement of the downhole tool 105 may thereby be manipulated using various movement of the vibration assembly 118 alone or in combination with other motion components to achieve desired drilling. Movement may be used to affect drilling, for example, by moving the drill bit 114 to offset the damaging drilling effects. As indicated by the curved arrow, the BHA 112 is rotationally driven. As indicated by the arrows along the axis of BHA 112, as the drilling tool 105 is advanced into the wellbore 106, the BHA 112 may be subject to compression C.
One or more controllers 120a,b may be provided to operate the wellsite 100. For example, a surface controller 120a may be provided at the surface and a downhole controller 120b may be provided in the drilling tool 105. The controllers 120a,b may be provided with measurement and/or data control devices (e.g., processors, central processing units, etc.) to collect and/or analyze drilling data. The controller(s) 120a,b may operate the surface and/or subsurface equipment 101, 102 based on the drilling data.
The motor assembly 115 includes a drive portion 222 and an adjustment portion 224. The drive portion 222 and the adjustment portions 224 may be positioned in collars (e.g., drill collars). The collars may be connectable to other components of the BHA 112 and/or the drill string (e.g., 110 of
The adjustment portion 224 may operatively connect the motor assembly 115 to the bearing assembly 116 to translate drive from the motor assembly 115 to the drill bit 114. The adjustment portion 224 may include various adjustment components, such as a lock housing 226.
The bearing assembly 116 includes a crossover housing 230, a bearing housings 232a,b, a bearing mandrel 234. The crossover and bearing housings 230, 232a,b may be tubular portions for connecting and/or receiving portions of the BHA 112 and/or permit the passage of fluid therethrough. The bearing housings 232a,b may include multiple portions as shown. The bearing housing 232a is connectable to the adjustment portion 224 via the crossover housing 230. An adjustment ring 228 is provided between the bearing housing 232a and the crossover housing 230.
The bearing mandrel 234 is receivable into the bearing housing 232b and extends downhole therefrom. The bearing mandrel 234 may be positioned between the bearing housing 232b and the drill bit 114 (
The vibration assembly 118 is positioned in the bearing assembly 116. In particular, the vibration assembly 118 is positioned within the bearing housing 232a along an outer surface of the bearing mandrel 234. The bearing mandrel 234 may have a stepped outer surface with a mandrel shoulder and the bearing housing 232a has a housing shoulder defining a space therebetween to support the vibration assembly 118 therein. Spacers (or rings, seals, and or other supports) 241 may be provided therein to support the vibration assembly 118.
The vibration assembly 118 includes a bearing race 242, a vibration race 244, a cage 246, rollers 248, and connectors 250. The rollers 248 are positioned between the bearing race 242 and the vibration race 244. The cage 246 rotationally supports the rollers 248. The vibration race 244 may be fixed to the bearing housing 232a by connectors 250, such as shoulder bolts. The vibration assembly 118 may be configured to provide additional movement (e.g., axial movement, hammering, vibration, etc.) of the BHA 112 as indicated by the double arrow.
The bearing race 242 and the vibration race 244 may each have engagement surfaces engageable with the rollers 248. The shape of the surfaces may define movement of the rollers 248 therealong whereby the movement, such as axial movement as shown by the double arrow, may be provided as is described herein. Any number of rollers and openings in the cage may be provided to achieve the desired movement.
In this version, the adjustment portion 324 has locking housing 326 and adjustment ring 328 in a different configuration. The bearing assembly 316 extends downhole from the adjustment portion 324 and includes crossover housing 330 and the vibration assembly 318. The crossover housing 330 connects a bearing housing 332 to the adjustment portion. The bearing housing 332 is a tubular member with the bearing mandrel 234 extending therein. The bearing housing 332 extends from the mandrel 234 to the crossover housing 330 and has a stabilizer sleeve 333 threadedly connected to an outer surface thereof.
The vibration assembly 318 is positioned between the bearing housing 332 and the mandrel 234. Locking spacers 340 and additional spacers 241 are provided in the space between the bearing housing 332 and the bearing mandrel 234 to support the vibration assembly 318. The locking spacers 340 may be threaded onto an outer surface of the mandrel 234.
The vibration assembly 318 includes a bearing race 342, a vibration race 344, a cage 346, and rollers 348. The vibration assembly 318 and its components are similar to those of
The vibration assembly 418, includes a bearing (flat surface) race 442, a vibration (curved surface) race 444a, a cage 446, and rollers 448 similar to those of the vibration assemblies 118, 318. The vibration assembly 518, includes a pair of the vibration (curved surface) races 444b, cage 446, and rollers 448. As shown in these versions, the bearing race 442 and the vibration race 444 each have an engagement surface 450a,b, respectively, thereon for engaging the rollers 448.
As shown in
The bearing race 442 may have a planar surface 450a for smooth engagement with the rollers 448, and the vibration race 444 may have a non-planar (e.g., wavy) surface 450b for driving the rollers 448 therealong. In some cases, the bearing race 442 may be replaced with another vibration race provided with a non-planar surface 450b the same as or different from the vibration race 444.
The cage 446 may be positionable between the vibration race 444 and the bearing race 442 or between pairs of the vibration races 444. The cage 446 may be used to keep the rollers 448 in a desired position about (e.g., equidistant along) the engagement surfaces 450a,b. The cage 446 is a ring shaped member configured to rotationally support the rollers 448 therein and/or to prevent sticking and/or jamming. With the rollers 448 in position in the cage 446, the rollers 448 extend a distance from the cage 446 for engagement with the engagement surfaces 450a,b of the bearing race 442 and/or vibration race 442.
In some cases, the cage 446 may be eliminated and the rollers 448 may be supported between the races so that the rollers 448 contact each other around the circumference of the races and keep themselves equidistant thereabout. This cageless version may be used, for example, with mud-lubricate bearing stacks.
A constant gap is defined between the cage 446 and the engagement surfaces 450a, and a variable gap is defined between the cage 446 and the engagement surface 450b. When the BHA 112 is in compression (see, e.g., C of
As the rollers 448 engage the smooth engagement surfaces 450a, no change in width of the vibration assembly 418 is provided. As the rollers 448 engage the wavy engagement surface 450b, the vibration assembly 418 changes width. As shown in
X2=X1+dX Eqn. (1)
As shown in
X4=X3+2*dX Eqn. (2)
Referring to
The number of rollers 448 may determine a vibration frequency with respect to a rotational speed of the bearing mandrel 234 compared to the bearing housing 232a. For example, 15 rollers may be used to provide 7.5 hz at 60 RPM (and harmonics thereof). For a 120 RPM motor, a 15 hz axial vibration may be generated. The cage 446 may rotate at about one half of the rotational speed when the roller 448 is in rolling contact with the engagement surface 450b.
An amplitude of vibration may be affected by a length of the waves (e.g., dX) in the engagement surface 450b. The bearing race 442 and/or the vibration races 444 may be timed to each other to provide desired engagement. If both races are perfectly misaligned, the cage 446 may shuttle between the races without causing axial movement.
The vibration races may include nonplanar (e.g., variable, ramping surfaces) to induce axial movement of the upper portion of the motor housing of the BHA 112 with respect to the mandrel 234 and drill bit 114 (see, e.g.,
The cage 446 is depicted as a ring shaped member with rectangular holes 447 to receive the rollers 448 therein. The vibration race 444 is a ring shaped member having the engagement surface 450b thereon. The cage 446 is positionable adjacent the engagement surface 450b of the vibration race 444. The engagement surface 450b is depicted as a wavy surface having waves thereon to rollingly engage the rollers 448. In this example, the rollers 448 may roll along the waves of the engagement surface 450b at a predefined speed along the vibration race 444.
As shown in these views, the engagement surface 450b may have a sinusoidal shape with a smooth transition between the peaks 760 and the valleys 762 along the engagement surface 450b. The sinusoidal shape may have a length S between the peaks 760. A vertical length between the peaks 760 and the valleys 762 is shown as dX. The shape and dimension provided by the sinusoidal wave may be varied to change axial acceleration of the BHA 112, thereby providing movement, such as vibration.
In this version, the engagement surface 950 has a profile with peaks 960 including symmetric ramps (or inclines) 964 between the flat peaks 960 and curved valleys 962. The valley 962 has a radius R1 and the ramp 964 has a radius R2. The ramp 964 inclines at an angle θ2 from the flat peak 960.
As shown in
In the version of
In the version of
In the version of
While specific configurations of the vibration assemblies herein are provided, it will be appreciated that variations in shape and/or dimension may be provided. For example, while specific examples of rollers in openings of the cage are depicted, the rollers may optionally be of any shape, such as tapered, conical, spherical or other shapes. In another example, variations in the shapes of the waves along the engagement surface may be provided to achieve the desired range, speed, and/or type of motion.
It will be appreciated by those skilled in the art that the techniques disclosed herein can be implemented for automated/autonomous applications via software configured with algorithms to perform the desired functions. These aspects can be implemented by programming one or more suitable general-purpose computers having appropriate hardware. The programming may be accomplished through the use of one or more program storage devices readable by the processor(s) and encoding one or more programs of instructions executable by the computer for performing the operations described herein. The program storage device may take the form of, e.g., one or more floppy disks; a CD ROM or other optical disk; a read-only memory chip (ROM); and other forms of the kind well known in the art or subsequently developed. The program of instructions may be “object code,” i.e., in binary form that is executable more-or-less directly by the computer; in “source code” that requires compilation or interpretation before execution; or in some intermediate form such as partially compiled code. The precise forms of the program storage device and of the encoding of instructions are immaterial here. Aspects of the invention may also be configured to perform the described functions (via appropriate hardware/software) solely on site and/or remotely controlled via an extended communication (e.g., wireless, internet, satellite, etc.) network.
While the embodiments are described with reference to various implementations and exploitations, it will be understood that these embodiments are illustrative and that the scope of the inventive subject matter is not limited to them. Many variations, modifications, additions and improvements are possible. For example, various shapes and/or configurations of the vibration assembly and/or its components may be used. Various combinations of features described herein may be provided.
Plural instances may be provided for components, operations or structures described herein as a single instance. In general, structures and functionality presented as separate components in the exemplary configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements may fall within the scope of the inventive subject matter.
This application is a 35 U.S.C. § 371 national stage application of PCT/CA2016/000099 filed Apr. 4, 2016, and entitled “Downhole Vibration Assembly and Method of Using Same,” which claims priority to U.S. application No. 62/144,801 filed on Apr. 8, 2015, both of which are incorporated herein by reference in their entirety for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2016/000099 | 4/4/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/161502 | 10/13/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1196656 | Bugbee | Aug 1916 | A |
3235014 | Brooks | Feb 1966 | A |
3363700 | Bogusch, Jr. | Jan 1968 | A |
3443446 | Buergel | May 1969 | A |
3659464 | Puyo | May 1972 | A |
4077683 | Bhateja et al. | Mar 1978 | A |
4232751 | Trzeciak | Nov 1980 | A |
5116147 | Pajari, Sr. | May 1992 | A |
5664891 | Kutinsky | Sep 1997 | A |
6155360 | McLeod | Dec 2000 | A |
6230819 | Chen | May 2001 | B1 |
7191848 | Ha | Mar 2007 | B2 |
8517093 | Benson | Aug 2013 | B1 |
8764307 | Brubaker et al. | Jul 2014 | B2 |
20080099245 | Hall et al. | May 2008 | A1 |
20150023137 | Benson | Jan 2015 | A1 |
20180066488 | Wiercigroch | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
201778652 | Mar 2011 | CN |
102465967 | May 2012 | CN |
104169597 | Nov 2014 | CN |
104405287 | Mar 2015 | CN |
Entry |
---|
International Search Report dated Jun. 22, 2016, for International Patent Application No. PCT/CA2016/000099 filed Apr. 4, 2016 (5 pgs). |
Chinese First Office Action dated Dec. 29, 2018, and Search Report for Application No. CN 201680020948.0. |
Extended European Search Report dated Nov. 26, 2018, for Application No. EP 16775970. |
Chinese Office Action dated Sep. 19, 2019, and Search Report for Application No. CN 201680020948.0. |
Number | Date | Country | |
---|---|---|---|
20180080284 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
62144801 | Apr 2015 | US |