Not applicable.
The present disclosure is directed toward a vibration enhancing apparatus that includes a first end and a second end. The apparatus also includes a passageway disposed at least partially within a housing to permit fluid to flow through the apparatus. Furthermore, the apparatus includes at least one spring designed having a spring constant that is responsive to a vibratory tool and other tools used in a bottom hole assembly with the apparatus.
The present disclosure is also directed toward a vibration enhancing apparatus that includes a housing and at least one spring disposed within the housing and around a mandrel slidably disposed in the housing. The apparatus also includes a first piston element disposed on one end of the mandrel and slidably disposed in the housing. Additionally, the apparatus includes an internal port radially disposed in the mandrel in fluid communication with a first annulus area disposed between the mandrel and the housing and in fluid communication with the first piston element. The apparatus further includes an external port radially disposed in the housing in fluid communication with a second annulus area disposed between a portion of the first piston element.
This disclosure is also directed towards a method of determining a vibrational frequency at which a vibratory tool useable in a downhole assembly operates, the downhole assembly separated into an upper bottom hole assembly and a lower bottom hole assembly having a mass and designing a vibration enhancing apparatus that cooperates with the lower bottom hole assembly to have a resonant frequency that is substantially equal to the vibrational frequency of the vibratory tool.
This disclosure is further directed toward a method of determining a resonant frequency of a vibration enhancing apparatus cooperating with a lower bottom hole assembly of a bottom hole assembly and designing a vibratory tool to be used in the bottom hole assembly having a vibrational frequency that is responsive to the resonant frequency of the vibration enhancing apparatus and the lower bottom hole assembly.
The disclosure is also directed toward a method of deploying a bottom hole assembly, the bottom hole assembly comprising a vibration enhancing apparatus and a vibratory tool; operating the vibratory tool at a vibrational frequency; and operating the vibration enhancing apparatus and a lower portion of the bottom hole assembly at a resonant frequency that is responsive to the predetermined frequency of the vibratory tool to maximize vibration amplitude of the bottom hole assembly.
The present disclosure relates to a vibration enhancing apparatus 10 that can be configured to be used with any type of vibratory tool 12 (or agitation tool) known in the art, such as the XRV produced by Thru Tubing Solutions, the NOV Agitator, or the Tempress produced by Oil States, to amplify the vibration or agitation provided by the vibratory tool 12. The present disclosure is also directed toward a method of using the apparatus 10 and a method of tuning the apparatus 10 to maximize the amplification of the vibratory tool 12. As shown in
The apparatus 10, shown in more detail in
In one embodiment, the apparatus 10 can be disposed downhole from the vibratory tool 12 in the BHA 14. In this embodiment, the first end 22 of the apparatus 10 is in fluid communication with the vibratory tool 12 and the fluid passageway 26. The second end 24 would be adapted to be connectable to other downhole tools to be disposed downhole of the apparatus 10. In another embodiment, the apparatus 10 can be disposed uphole from the vibratory tool 12 in the BHA 14. In this embodiment, the first end 22 of the apparatus 10 would be adapted to be connectable to other downhole tools to be disposed uphole of the apparatus 10. The second end 24 of the apparatus 10 is in fluid communication with the fluid passageway 26 and the vibratory tool 12 disposed below.
The end 22 or 24 in fluid communication with the vibratory tool 12 can extend from inside of the housing 20. This end 22 or 24 can also be provided with a splined section 30 disposed thereon to prevent the fluid passageway 26 and the at least one spring 28 from rotating independently of the housing 20, vibratory tool 12 or the BHA 14. The apparatus 10 further includes a spline receiving area 32 to cooperate with the splined section 30 to allow the housing 20, the end 22 or 24 opposite of the vibratory tool 12 and the tools disposed below the apparatus 10 to have axial motion represented by reference numeral 27 with respect to the vibratory tool 12, yet still prevent the fluid passageway 26 and the at least one spring 28 from rotating independently of the housing 20, vibratory tool 12 or the BHA 14.
As previously stated, this disclosure is also directed to a method of using the apparatus 10. The apparatus 10 and vibratory tool 12 are run into a wellbore. Fluid can then be pumped into and through the vibratory tool and the apparatus 10 to advance the BHA 14 further into the wellbore.
In another aspect of the present disclosure, a method of tuning or optimizing the effectiveness of the apparatus 10 is disclosed herein. Any tools in the BHA 14 disposed uphole (upper BHA 34 and tubing 35) from the apparatus 10 provides the driving force for the BHA 14 into the wellbore and all tools in the BHA 14 disposed below the apparatus 10 is considered the lower BHA 36. The at least one spring 28 in the apparatus 10 allows free axial movement between the upper BHA 34 and the lower BHA 36 while the splined section 30 and the spline receiving area 32 cooperate to restrict rotational motion between the upper BHA 34 and the lower BHA 36.
In one embodiment, the vibratory tool 12 used in the BHA 14 will have a unique vibrational frequency. The apparatus 10 can be set up to cooperate with the lower BHA 36 to have a resonant frequency that is equivalent to the unique vibrational frequency of the vibratory tool 12. The resonant frequency (f) is a function of the spring constant (K) and the mass (M) (i.e., the mass of the tools disposed below the apparatus 10 or the mass of the tools present in the lower BHA 36) present within the system, and can be determined using the following equation:
The vibrational frequency of the vibratory tool 12 used in the BHA 14 can be calculated or measured. Once the vibrational frequency of the vibratory tool 12 has been determined, the following equation can be used to determine the spring constant (K) which will cause the natural frequency of the spring mass system represented by the apparatus 10 and the lower BHA 36 to match the input frequency of the vibratory tool 12:
K=M(2πf)2
The at least one spring 28 of the apparatus 10 can be designed such that it has the required spring constant (K) to maximize the vibration amplitude of the BHA 14 from the vibratory tool 12 and the apparatus 10. In one embodiment, the at least one spring 28 and/or the mass of the lower BHA 36 can be adjusted to achieve the maximum vibration amplitude of the BHA 14.
In another embodiment, the vibratory tool 12 can be designed to have a specific frequency to match the resonant frequency of a specific apparatus 10 having a predetermined spring constant (K) and the mass of a specific lower BHA 36.
In yet another aspect of the present disclosure, a method for designing the apparatus 10, adjusting the mass of the lower BHA 36 and/or designing the vibratory tool 12 to make the unique frequency of the vibratory tool substantially equal to the resonant frequency of the apparatus 10 and the lower BHA 36 is disclosed. In one aspect of this embodiment, the unique vibrational frequency of the vibratory tool 12 is determined. The vibrational frequency of the vibratory tool 12 is used to design the at least one spring 28 of the apparatus 10 to maximize the vibration amplitude of the BHA 14. The method can also include the step manipulating the mass of the lower BHA 36 and/or the at least one spring 28 to have a resonant frequency that matches the frequency of the vibratory tool 12 to maximize the vibration amplitude of the BHA 14. In another embodiment, the resonant frequency of the apparatus 10 and the lower BHA 36 is determined. Once the resonant frequency of the apparatus 10 and the lower BHA 36 is determined, the vibratory tool 12 can be designed to have a vibrational frequency substantially equal to the resonant frequency of the apparatus 10 and the lower BHA 36.
The apparatus 10 can be designed with a “pump-open” or “pump-closed” area. When the apparatus 10 is of the “pump-open” type, a method is provided wherein the apparatus 10 is caused to extend the apparatus 10 when the pressure of the fluid flowing through the apparatus 10 is greater than the pressure of the fluid outside of the apparatus 10, and contract the apparatus 10 when the pressure of the fluid is greater outside of the apparatus 10 than the pressure of the fluid is inside the apparatus 10. Conversely, when the apparatus 10 is of the “pump-closed” type, a method is provided wherein the apparatus 10 is caused to contract the apparatus 10 when the pressure of the fluid flowing through the apparatus 10 is greater than the pressure of the fluid outside of the apparatus 10, and extend the apparatus 10 when the pressure of the fluid is greater outside of the apparatus 10 than the pressure of the fluid is inside the apparatus 10.
When the vibratory tool 12 operates, there is fluid pulsation through the apparatus 10 which occurs at the same frequency as the vibratory force generated by the vibratory tool 12. This fluid pulsation causes pressure fluctuations above and below the vibratory tool 12. If the apparatus 10 is designed with a pump-open or pump-closed area and is positioned such that it is exposed to the fluid pressure fluctuations produced by the vibratory tool 12, a hydraulic force will be generated within the apparatus 10 which will cause the apparatus 10 to experience a cyclic contraction/extension force. If the spring 28/mass of the BHA 14 is “tuned” to this cyclic loading frequency, maximum vibration of the BHA 14 and tubing will result. So, another novel concept is to “tune” the natural frequency of the BHA 14 to match the cyclic hydraulic loading produced by the vibratory tool 12 acting on a spring tool with a “pump-open/closed” area.
In real systems, there is often significant damping in addition to the spring and mass.
α=R/(2m) is a decay constant and ωd=√{square root over (ω02−α2)} is the characteristic (or natural) angular frequency of the system.
In another embodiment of the present disclosure,
The apparatus 10 of the embodiment shown in
The apparatus 10 includes at least one spring 90 disposed around the mandrel 74 and between the mandrel 74 and the upper housing 82. In one embodiment, the spring 90 is disposed between an upper shoulder 92 disposed on the inside of the upper housing 82 and a lower shoulder 94 disposed on the inside of the upper housing 82. In another embodiment, the apparatus 10 includes two springs 90 where the springs are separated by a lip element 96 disposed on the inside of the upper housing 82. It should be understood and appreciated that the lip element 96 is disposed on the inside of the upper housing 82 between the upper shoulder 92 and the lower shoulder 94. Furthermore, the apparatus 10 can be designed to incorporate any desired number of springs 90.
The top sub 70 has a passageway 98 disposed therein to permit fluid to flow through the top sub 70 and into the mandrel 74. The top sub 70 includes a splined section 100 on a lower end 102 of the top sub 70 where splines 104 extend radially therefrom. The splines 104 engage a spline receiving area 106 disposed on the inside of the upper housing 82. The splines 104 engagement with the spline receiving area 106 prevent the top sub 70, and thus the mandrel 74 and the piston element 80, from rotating independently of the upper housing 82, the lower housing 84, the connector element 86 and the bottom sub 72.
The mandrel 74 includes a passageway 108 axially disposed therein to permit fluid to flow from the top sub 70 and through the mandrel 74. The mandrel 74 also includes an internal port 110 radially disposed in the lower end 78 of the mandrel 74 to permit fluid to flow into an annulus area 112 and engage with a portion of the piston element 80. The annulus area 112 is disposed between the connector element 86 and the piston element 80 that is attached to the lower end 78 of the mandrel 74. As fluid, which is at a higher pressure than fluid outside of the apparatus 10, flows into the annulus area 112, the bottom sub 72, the lower housing 84 and the upper housing 82 are forced to move in the uphole direction with respect to the top sub 70, the mandrel 74 and the piston element 80. This uphole movement of the bottom sub 72, the lower housing 84 and the upper housing 82 causes the apparatus 10 to contract and compress the spring(s) 90.
Further, the lower housing 84 includes an external port 114 in fluid communication with a second annulus area 116 disposed between the piston element 80 and the lower housing 84. The second annulus area 116 is disposed on the downhole side of a piston head 118 of the piston element 80. When the pressure of the fluid outside of the apparatus 10 becomes higher than the pressure of the fluid flowing through the apparatus 10, the bottom sub 72, the lower housing 84 and the upper housing 82 are forced to move in the downhole direction with respect to the top sub 70, the mandrel 74 and the piston element 80. This downhole movement of the bottom sub 72, the lower housing 84 and the upper housing 82 causes the apparatus 10 to extract and thus, reduce the compression of the spring(s) 90. In this embodiment, the piston element 80 can further include a tubular extension 120 that extends into the lower sub 72 and is slidably disposed therein.
In a further embodiment of the present disclosure shown in
Similar to the operation of the apparatus 10 previously described herein, the second piston element 122 increases the contraction of the apparatus 10 and the compression of the spring 90. The third annulus area 130 is disposed between a shoulder section 132 disposed on the inside of the lower housing 84 and the piston element 80 that is attached to the lower end of the second piston element 122. As fluid, which is at a higher pressure than fluid outside of the apparatus 10, flows into the third annulus area 130, the bottom sub 72, the lower housing 84 and the upper housing 82 are forced to move in the uphole direction with respect to the top sub 70, the mandrel 74, the piston element 80, and the second piston element 122. This uphole movement of the bottom sub 72, the lower housing 84 and the upper housing 82 causes the apparatus 10 to contract and compress the spring(s) 90.
Further, the lower housing 84 includes a second external port 134 in fluid communication with a fourth annulus area 136 disposed between the piston element 80 and the lower housing 84. The fourth annulus area 136 is disposed on the downhole side of the piston head 124 of the piston element 122 and uphole of the shoulder section 132 of the lower housing 84. When the pressure of the fluid outside of the apparatus 10 becomes higher than the pressure of the fluid flowing through the apparatus 10, the bottom sub 72, the lower housing 84 and the upper housing 82 are forced to move in the downhole direction with respect to the top sub 70, the mandrel 74, the piston element 80, and the second piston element 122. This downhole movement of the bottom sub 72, the lower housing 84 and the upper housing 82 causes the apparatus 10 to extract and thus, reduce the compression of the spring(s) 90. While only two piston elements 80 and 122 are shown in
From the above description, it is clear that the present disclosure is well adapted to carry out the objectives and to attain the advantages mentioned herein as well as those inherent in the disclosure. While presently disclosed embodiments have been described for purposes of this disclosure, it will be understood that numerous changes may be made which will readily suggest themselves to those skilled in the art and which are accomplished within the spirit of the disclosure.
The present application is a continuation of U.S. Ser. No. 14/899,006, filed Dec. 16, 2015, which is a U.S. National Stage filing of International Application No. PCT/US2015/024759, filed Apr. 20, 2015, which claims priority to U.S. Provisional Application having U.S. Ser. No. 61/976,241, filed Apr. 7, 2014, which claims the benefit under 35 U.S.C. 119(e). The disclosure of which is hereby expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2554005 | Bodine, Jr. | May 1951 | A |
2717763 | Bodine, Jr. | Sep 1955 | A |
2858108 | Wise | Oct 1958 | A |
2893692 | Marx | Jul 1959 | A |
2903242 | Bodine, Jr. | Sep 1959 | A |
2948059 | Bodine | Aug 1960 | A |
2958228 | Carrier, Jr. | Nov 1960 | A |
2970660 | Bodine, Jr. | Feb 1961 | A |
2989130 | Mathewson, Jr. | Jun 1961 | A |
3139146 | Bodine, Jr. | Jun 1964 | A |
3315755 | Brooks | Apr 1967 | A |
3360056 | Bodine, Jr. | Dec 1967 | A |
3431988 | Bodine, Jr. | Mar 1969 | A |
3597929 | Bodine | Aug 1971 | A |
3610347 | Diamantides | Oct 1971 | A |
3684037 | Bodine | Aug 1972 | A |
3686877 | Bodin | Aug 1972 | A |
3815691 | Richter, Jr. | Jun 1974 | A |
3848672 | Bodine | Nov 1974 | A |
4023628 | Bodine | May 1977 | A |
4236580 | Bodine | Dec 1980 | A |
4271915 | Bodine | Jun 1981 | A |
4299279 | Bodine | Nov 1981 | A |
4407365 | Cooke, Jr. | Oct 1983 | A |
4553443 | Rossfelder | Nov 1985 | A |
4603748 | Rossfelder | Aug 1986 | A |
4658897 | Kompanek | Apr 1987 | A |
5027908 | Roussy | Jul 1991 | A |
5090485 | Pomonik | Feb 1992 | A |
5234056 | Bodine | Aug 1993 | A |
6332841 | Secord | Dec 2001 | B1 |
7264055 | Mody et al. | Sep 2007 | B2 |
7357197 | Schultz | Apr 2008 | B2 |
7591327 | Hall et al. | Sep 2009 | B2 |
8365818 | Schultz | Feb 2013 | B2 |
8907268 | Saenger | Dec 2014 | B2 |
9057258 | Benson | Jun 2015 | B2 |
9109410 | Swietlik | Aug 2015 | B2 |
9316100 | Benson | Apr 2016 | B2 |
9470055 | Harrigan | Oct 2016 | B2 |
9890601 | Baudoin | Feb 2018 | B2 |
20020092651 | Bernat | Jul 2002 | A1 |
20020121378 | Zheng | Sep 2002 | A1 |
20020148606 | Zheng | Oct 2002 | A1 |
20030217850 | Shaw et al. | Nov 2003 | A1 |
20100194117 | Pabon | Aug 2010 | A1 |
20110198126 | Swietlik | Aug 2011 | A1 |
20120012751 | Saenger | Jan 2012 | A1 |
20120048619 | Seutter et al. | Mar 2012 | A1 |
20120048621 | Stewart | Mar 2012 | A1 |
20120247832 | Cramer | Oct 2012 | A1 |
20140083772 | Wiercigroch | Mar 2014 | A1 |
20150075276 | Cooper | Mar 2015 | A1 |
20150159452 | Miller | Jun 2015 | A1 |
20160273294 | Moyes | Sep 2016 | A1 |
20170030158 | Harrigan | Feb 2017 | A1 |
Entry |
---|
International Search Report and Written Opinion; PCT/US2015/024759; dated Jul. 15, 2015; 17 pages. |
Number | Date | Country | |
---|---|---|---|
20170241223 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14899006 | Dec 2015 | US |
Child | 15588372 | US |