This application claims priority to EP Patent Application No. 18153490.0 filed Jan. 25, 2018, the entire contents of which are hereby incorporated by reference.
The present invention relates to a downhole wireline intervention tool for performing intervention in a well. The present invention also relates to a downhole system and an intervention method for intervening a well by means of the downhole wireline intervention tool according to the present invention. Finally, the invention relates to the use of the downhole wireline intervention tool according to the present invention.
When operating in a well several kilometres from the well head or the blowout preventer, a lot of power is lost through the wireline, and therefore providing enough pressure to expand a patch several kilometres down the well is impossible when using the known wireline tools. Known patch setting tools are therefore operated with pressure from surface via a coiled tubing or a drill pipe in order to provide enough pressure. However, such coiled tubing equipment takes approximately 14 days to transport to an offshore well.
It is an object of the present invention to wholly or partly overcome the above disadvantages and drawbacks of the prior art. More specifically, it is an object to provide an improved intervention tool capable of operating by a wireline capable of expanding a patch several kilometres down a well.
The above objects, together with numerous other objects, advantages and features, which will become evident from the below description, are accomplished by a solution in accordance with the present invention by a downhole wireline intervention tool for performing intervention in a well, comprising:
The positive displacement pump may be a high pressure pump.
Further, the positive displacement pump may be configured to increase the pressure with more than 300 bar, preferably more than 500 bar.
Moreover, the flow control device may be arranged downstream of the positive displacement pump and upstream of the expandable bladder in order that the inlet is fluidly connected to the positive displacement pump and an outlet is fluidly connected to the expandable bladder.
Also, the flow control device may be arranged between the expandable bladder and the positive displacement pump.
In addition, the piston may comprise a through-bore fluidly connecting the inlet and the outlet.
The flow control device may comprise a chamber in which the piston is movable between the first position and the second position.
Moreover, the flow control device may further comprise a spring configured to force the piston towards the inlet.
Additionally, the piston may comprise a restriction decreasing an inner diameter of the through-bore, creating a pressure drop over the piston.
The downhole wireline intervention tool may further comprise a hydraulic pump driven by the motor for driving the positive displacement pump.
Furthermore, the positive displacement pump may be a reciprocating positive displacement pump, such as a piston pump or a diaphragm pump.
Also, the positive displacement pump may comprise a reciprocating piston and the hydraulic pump may drive the reciprocating piston.
Moreover, a second hydraulic control line may be connected to the hydraulic pump and the flow control device for moving the piston from the second position to the first position.
In addition, the piston may comprise a first sealing element and a second sealing element which in the second position of the piston are arranged in such a manner that the first sealing element is arranged on one side of the venting port and the second sealing element is arranged on the other side of the venting port.
The flow control device may comprise a first part and a second part, the first part comprising the inlet, the venting port and the piston, and the second part comprising the outlet and a second venting port, the first part and the second part being fixated to each other by means of breakable parts, such as shear pins or shear discs, until a predetermined force is reached and the breakable parts break and the first part is movable away from the second part in order to unblock a fluid communication between the second venting port and the expandable bladder.
Further, the flow control device may comprise a breakable element, such as a shear pin or a shear disc, arranged for fixating the piston until a predetermined pressure is reached in the expandable bladder.
The downhole wireline intervention tool may further comprise a control unit for controlling the function of the tool.
Also, the expandable bladder may be arranged around a base pipe.
The base pipe may have an opening.
Furthermore, the expandable bladder may be made of a deflatable material, such as rubber, elastomer etc.
Moreover, the expandable bladder may be made of a reinforced material.
The downhole wireline intervention tool may further comprise a second expandable bladder.
Also, the venting port may comprise a filter.
In addition, the downhole wireline intervention tool may further comprise a driving unit, such as a downhole tractor.
The present invention also relates to a downhole system comprising a well tubular metal structure arranged at least partly in a borehole of a well and further comprising a downhole wireline intervention tool as described above.
The downhole system, as described above, may further comprise a patch configured to be expanded by the expandable bladder at a certain position in the well.
The present invention also relates to an intervention method for intervening a well by means of the downhole wireline intervention tool as described above, comprising:
Also, the moving of the piston of the flow control device from the first position to the second position may be performed by breaking a breakable element when reaching a predetermined pressure difference, releasing the piston, or by stopping the flow of fluid from the positive displacement pump equalising the pressure in order that the piston is free to move.
Finally, the present invention also relates to use of the downhole wireline intervention tool for fracturing a formation downhole in a well, setting of a patch, isolating a part of the well, or expanding an annular barrier.
The invention and its many advantages will be described in more detail below with reference to the accompanying schematic drawings, which for the purpose of illustration show some non-limiting embodiments and in which:
All the figures are highly schematic and not necessarily to scale, and they show only those parts which are necessary in order to elucidate the invention, other parts being omitted or merely suggested.
It is possible to increase a pressure in the expandable bladder up to more than 300 bar, even with very little power, when having a positive displacement pump.
When operating in a well several kilometres from the well head or the blowout preventer, a lot of power is lost through the wireline, and therefore providing enough pressure to expand a patch or to pre-fracture the formation is impossible. Known patch setting tools are therefore operated with pressure from surface via a coiled tubing or a drill pipe in order to provide enough pressure. However, such coiled tubing equipment takes approximately 14 days to transport to an offshore well and therefore operation by wireline tools are preferred since these tools can be transported to the well by helicopter in a few hours. By having a flow control device, it is possible to use a positive displacement pump on a wireline and to provide the high pressure downhole, since the expanded expandable bladder can be deflated by moving the piston from the second position to the first position and then let fluid inside the bladder out into the well. A positive displacement pump can provide a high pressure but only in one direction, and it cannot return the fluid in the bladder without having to design a very complex positive displacement pump, and such complex pump is not small enough to enter into a well. When the fluid cannot be returned, the bladder cannot be deflated and hence not be retracted from the well. Therefore, by having the flow control device, the fluid inside the bladder is vented into the well in order to deflate the bladder in a simple manner and therefore, a positive displacement pump can be used in a wireline tool.
In
The pressure inside the expandable bladder of
In
In
In
As shown in
The expandable bladder 6 is arranged around a base pipe 24 and is expanded via openings 35 in the base pipe 24. The expandable bladder is made of a deflatable material, such as rubber, elastomer etc. and/or it may be made of a reinforced material.
The downhole wireline intervention tool 1 may further comprise a second expandable bladder 25 in order to expand a very long patch 29 as shown in
In another embodiment, the two bladders shown in
As can be seen in
In
The invention further relates to an intervention method by intervening a well by means of the downhole wireline intervention tool 1, positioning the downhole wireline intervention tool at a certain position in the well, activating the positive displacement pump for delivering a flow of fluid into the expandable bladder which is expanded when the piston of the flow control device is in the second position. Then, the piston of the flow control device is moved from the second position to the first position, and the expandable bladder is deflated this activation of the flow control device. The moving of the piston of the flow control device from the second position to the first position is performed by breaking a breakable element when reaching a predetermined pressure difference, releasing the piston, or by stopping the flow of fluid from the positive displacement pump, thereby equalising the pressure so that the piston is free to move.
By fluid or well fluid is meant any kind of fluid that may be present in oil or gas wells downhole, such as natural gas, oil, oil mud, crude oil, water etc. By gas is meant any kind of gas composition present in a well, completion, or open hole, and by oil is meant any kind of oil composition, such as crude oil, an oil-containing fluid etc. Gas, oil, and water fluids may thus all comprise other elements or substances than gas, oil, and/or water, respectively.
By an annular barrier is meant an annular barrier comprising a tubular metal part mounted as part of the well tubular metal structure and an expandable metal sleeve surrounding and connected to the tubular part defining an annular barrier space.
By a casing or well tubular metal structure is meant any kind of pipe, tubing, tubular, liner, string etc. used downhole in relation to oil or natural gas production.
In the event that the tool is not submergible all the way into the casing, a downhole tractor can be used to push the tool all the way into position in the well. The downhole tractor may have projectable arms having wheels, wherein the wheels contact the inner surface of the casing for propelling the tractor and the tool forward in the casing. A downhole tractor is any kind of driving tool capable of pushing or pulling tools in a well downhole, such as a Well Tractor®.
Although the invention has been described in the above in connection with preferred embodiments of the invention, it will be evident for a person skilled in the art that several modifications are conceivable without departing from the invention as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
18153490 | Jan 2018 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
2856006 | Buck | Oct 1958 | A |
3326293 | Skipper | Jun 1967 | A |
3389752 | Lebourg | Jun 1968 | A |
3456725 | Hatch | Jul 1969 | A |
3460625 | Ellis | Aug 1969 | A |
3650325 | Owens | Mar 1972 | A |
5297634 | Loughlin | Mar 1994 | A |
5404946 | Hess | Apr 1995 | A |
5785120 | Smalley | Jul 1998 | A |
5833001 | Song | Nov 1998 | A |
6142230 | Smalley | Nov 2000 | A |
7392851 | Brennan, III et al. | Jul 2008 | B2 |
8776899 | Fripp | Jul 2014 | B2 |
8955606 | O'Malley | Feb 2015 | B2 |
9447651 | Hallundbæk | Sep 2016 | B2 |
20020157867 | Moore | Oct 2002 | A1 |
20030196795 | Kutac | Oct 2003 | A1 |
20060042801 | Hackworth | Mar 2006 | A1 |
20070095532 | Head | May 2007 | A1 |
20090255691 | Loughlin | Oct 2009 | A1 |
20090283279 | Patel | Nov 2009 | A1 |
20120261127 | Zhou | Oct 2012 | A1 |
20130068528 | Gray | Mar 2013 | A1 |
20150285031 | Kenison | Oct 2015 | A1 |
20160061010 | Sears | Mar 2016 | A1 |
20170145784 | Zhou | May 2017 | A1 |
20170306714 | Haugland | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
2 960 427 | Dec 2015 | EP |
2 384 692 | Mar 2010 | RU |
Entry |
---|
Extended Search Report for EP18153490.0 dated Jul. 18, 2018, 6 pages. |
Office Action dated May 4, 2022 issued in Russian Application No. 2020126863/03(047242) with English translation (18 pages). |
Number | Date | Country | |
---|---|---|---|
20190226299 A1 | Jul 2019 | US |