The present invention relates generally to fluid flow control and erosion control, and more particularly to an apparatus for use with rain gutter and downspout systems to dissipate rainwater or other liquids flowing therethrough efficiently and in a manner that reduces or eliminates erosion around the downspout discharge area.
Buildings, such as homes, apartments or other structures provided with a roof may have gutters to transport and redirect precipitation, HVAC condensate, and/or other fluids through a downspout where the water is released adjacent the building. The released water has been known to be destructive to the area near the foundation and/or the landscape nearby, particularly erosive or disruptive to common items used to dress the landscape, for example ground covers (pinestraw, mulch, etc.), flower beds, sod and/or plants.
In an attempt to reduce erosion, downspouts have been known to include various forms of extensions (above or below the ground) to direct and release the water away from the building, which typically require considerable additional costs, effort and time to install, especially when regular maintenance of the landscape is required. Other known downspouts are commonly provided with a splash block or other non-erosive surface, generally directly below the outlet to both reduce the rate of flow and change the direction (dispersal) of the flowing water before moving into the ground close to the foundation of the building, which can be both unsightly and inefficient, and can potentially cause the same erosion typical of downspouts lacking any attempt to reduce erosion (extension, splash block, etc.).
There is an ongoing need for improvements to drainage systems having downspouts or drainage pipes to eliminate the occurrence of erosion of areas near the output of the drainage pipe and the ground surface nearby, and to reduce the associated cost, assembly and size of devices eliminating the same. It is to the provision of improved downspout accessories and dissipators meeting these and other needs that the present invention is primarily directed.
In example embodiments, the present invention provides a dissipating downspout or dissipator plate attachment for a downspout for controlling the flow rate and fluid dispersion of water discharged through a downspout or drainage pipe.
In one aspect, the present invention relates to a dissipative downspout for draining water from a building to a ground surface. The dissipative downspout includes an elongate pipe and a flow control member. The elongate pipe includes an inlet section and an outlet section. The flow control member includes a drainage surface having a plurality of drainage holes configured to dissipate the drain water flowing therethrough. The flow control member is configured to mount at or proximal to the outlet section.
In another aspect, the invention relates to a dissipator for providing optimal water drainage from a downspout. The dissipator includes a base and a cover. The base forms a skirt portion and a lip portion. The skirt portion extends from a first end to a second end and defines a peripheral surface and an inner surface, and the lip extends generally transverse the skirt at the second end. The cover is configured to mount to the lip portion and defines a plurality of drainage holes. The skirt portion couples to the downspout so that the plurality of drainage holes of the drainage surface provide optimal water drainage by dissipating the water flowing within the downspout and through the dissipator.
Optionally, the cover includes at least one or more flanges to provide for slidingly engaging the cover with the lip portion of the base. In one form, the at least one or more flanges extend inwardly from an outer contour of the cover towards the drainage surface.
In yet another aspect, the present invention relates to a dissipator for dissipating drainage from a downspout. The dissipator includes a base and a cover. The base is configured to engage and the cover includes an array of holes having nine rows and five columns of 3/16″ holes. The array of holes provide optimal drainage by dissipating the drainage flowing within the downspout and through the dissipator. In one example form, the cover is integral with the base. In another example form, the cover is removably mountable with the base. Preferably, the dissipator is configured to removably mount to an outlet of the downspout. In one example form, the outlet of the downspout includes an elbow or attachment mounted thereto.
These and other aspects, features and advantages of the invention will be understood with reference to the drawing figures and detailed description herein, and will be realized by means of the various elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following brief description of the drawings and detailed description of the invention are exemplary and explanatory of preferred embodiments of the invention, and are not restrictive of the invention, as claimed.
The present invention may be understood more readily by reference to the following detailed description of the invention taken in connection with the accompanying drawing figures, which form a part of this disclosure. It is to be understood that this invention is not limited to the specific devices, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed invention. Any and all patents and other publications identified in this specification are incorporated by reference as though fully set forth herein.
Also, as used in the specification including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment.
In example embodiments, the present invention relates to a dissipative downspout or dissipator attachment for providing optimal drainage from a downspout or drainage pipe, thereby providing a desired rate of flow and dispersion of water flowing through the downspout and discharged onto the ground or other surface. With reference now to the drawing figures, wherein like reference numbers represent corresponding parts throughout the several views,
The cover plate 50 is generally planar and formed to substantially align with the outer contour of the mounting surface 40 of the base. In example embodiments, the cover 50 is formed from a plate having an inner surface or drainage surface 52 and an outer surface 54, wherein a plurality of drainage holes 56 provided therebetween allow for the dissipation of water 120 flowing therethrough (shown in
To mount the dissipator 10 to the drainage pipe P, the skirt 26 projecting towards the first end 22 is preferably frictionally engaged with the inner surface IS of the drainage pipe P. The drainage pipe P is generally rectangular and comprises the inner surface IS having a substantially similar contour to the outer surface 30 of the base 20. Preferably, the engagement between the dissipator 10 and the drainage pipe P allows for both optimal dissipation when mounted thereto (see
The capacity of the dissipator 10 can vary depending upon several factors in addition to the various sizes, shapes, and/or configurations of the drainage holes 56. Generally, the factors are known to include the roof area of the building, the slope of the roof, the anticipated maximum rainfall intensity and the dissipation surface area of the cover 50. In example embodiments, recorded data indicating rainfall for a particular location may be used with other calculations to determine the capacity of the dissipator 10. For example, it has been known to use a rainfall intensity map showing the maximum hourly rainfall intensity (inches per hour for a five minute interval) to be expected once in ten years. Preferably, the rainfall intensity records provide approximate rainfall rates to determine the required quantity of downspouts having dissipators 10 and/or the dissipation surface area of the cover 50 necessary to remain below or at full capacity for a given roof area (ft2). For example, a dissipator 10 having a cover providing a dissipation surface area of about (4″×2.5″, 10 in2) will fluctuate in capacity depending upon the rainfall intensity (2 inches per hour-11 inches per hour, lasting 5 minutes) such that the area of the roof allocated to the dissipator 10 is inversely proportional to the rainfall intensity. For example, as the rainfall intensity increases, the calculated area of the roof allocated for redirecting the rainfall within the drainage pipe (further dissipating) while remaining at or below the capacity of the dissipator decreases. In one example, for a rainfall intensity of about 2 inches per hour, the capacity of the dissipator 10 (having a dissipation surface of about 4″×2.5″) corresponds with a roof area of about 1680 square feet. In another example, for a rainfall intensity of about 11 inches per hour, the capacity of the dissipator 10 (having a dissipation surface of about 4″×2.5″) corresponds with a roof area of about 310 square feet. Thus, depending upon the rainfall intensity and the total area of the roof, the quantity of dissipators and/or the dissipation surface area can vary to ensure that the capacity is not exceeded.
Preferably, the drainage holes 56 are configured in opening size, shape, arrangement and/or spacing to provide a specified dispersion of the dissipated water. As shown in
The spacing between the drainage holes 56 can vary as desired to provide a specified dissipation performance. In example embodiments, the columns of openings are spaced to define a center-to-center dimension of about ⅜″ (or about 3/16″ from edge of one hole to adjacent edge of next hole), and the rows are spaced to define a center-to-center dimension of about ½″ (or about 5/16″ from edge of one hole to adjacent edge of next hole). Alternatively, the plurality of drainage openings can be configured with alternative sizes, shapes, spacing, and/or patterns to accommodate a desired dissipation capacity. The drainage openings of the cover 50, 150 can be punched, drilled, molded (e.g., when the cover is plastic) or otherwise formed. Optionally, the cover plate may form non-planar geometries wherein the dissipation area and/or mounting area exhibit alternate shapes and/or forms, for example, spherical, cylindrical, box-like, arcuate, and/or others as desired, for example to increase the available surface area in which dissipation openings can be provided, wherein the areas may project uniformly and/or non-uniformly beyond the mounting surface 40 of the base 20, and may also project internally and/or externally the drainage pipe when mounted thereto.
In example embodiments, the dissipator 10 can be formed from a plurality of materials including metal, composites, plastics, ceramics, other desired materials or combinations thereof. In one form, the dissipator 10 is constructed of galvanized steel or aluminum and has a thickness of about 26 gauge. The cover defines an area of about 15.5 in2 (4.75″×3.25″), wherein an area of about 5.5 in2 is provided for the mounting area and an area of about 10 in2 (4″×2.5″) is provided for the dissipation area. Alternatively, the cover can be provided in other desired thicknesses and/or define a desired dissipation area.
While the invention has been described with reference to preferred and example embodiments, it will be understood by those skilled in the art that a variety of modifications, additions and deletions are within the scope of the invention, as defined by the following claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/658,541, filed Jun. 12, 2012, the entirety of which is hereby incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5227078 | Augustine, III | Jul 1993 | A |
5358007 | Carlberg | Oct 1994 | A |
6240680 | Estes | Jun 2001 | B1 |
7736090 | Janesky | Jun 2010 | B2 |
20080295418 | Edell | Dec 2008 | A1 |
20110173897 | Schneider | Jul 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20130330127 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
61658541 | Jun 2012 | US |