Not Applicable
Not Applicable
1. Field of the Invention
This invention relates generally to a downward illumination assembly for directing light downward from the ceiling area of a room.
2. Description of the Related Art Including Information Disclosed Under 37 CFR 1.97 and 1.98
It's well known to mount downward illumination assemblies on ceiling panels. For example, U.S. Pat. No. 5,145,247 issued 8 Sep. 1992 to Robert Mandy, discloses a downward illumination assembly including a lamp housing having a closed upper end, an open lower end disposed axially opposite the closed upper end, and a tubular canister extending from around a periphery of the upper end to and defining the open lower end. Ceiling mount tabs extend radially outward from spaced positions around an outer surface of the canister to provide engagement surfaces for fasteners connecting the lamp housing to an upper surface of a ceiling panel. The downward illumination assembly of the Mandy '247 patent may include a pair of fluorescent lamp tubes removably supported in respective lamp sockets supported within the lamp housing and a generally tubular trim bezel friction fit within the tubular canister and retained, in part, by spring clips supported on an inner surface of the canister. The downward illumination assembly disclosed in the Mandy '247 patent also may include a side conduit fitting aligned with a through hole in the canister and supported on and extending radially outward from the canister to provide access for electrical wires to the lamp sockets. However, a downward illumination assembly constructed according to the Mandy '247 patent is unable to allow for removal of a lamp socket or ballast without removing the lamp housing.
Also, U.S. Pat. No. 7,066,617 issued 27 Jun. 2006 to Terry, Dalton, and Brandon Mandy (the Mandy '617 patent), discloses a downward illumination assembly that includes a lamp housing canister having a closed upper end and a generally cylindrical canister wall extending integrally downwardly from around a periphery of the upper end to an open lower end disposed axially opposite the closed upper end with the open lower end being positionable over and in concentric alignment with a circular opening in a ceiling panel. Ceiling mounts are carried by the canister wall to provide engagement surfaces for mounting the lamp housing over an opening in an elevator drop-ceiling panel. The downward illumination assembly of the Mandy '617 patent includes a power supply module that is removably supported in an installed position on a side-mounted module receptacle tray of the housing. The power supply module carries two lamp sockets and ballasts that are electrically coupled to the lamp sockets. When the power supply module is in the installed position fluorescent lamps plugged into the two lamp sockets extend into the lamp housing canister through respective lamp openings in the canister wall and will, when illuminated, radiate light out the lower end of the lamp housing canister and through an opening in a drop ceiling panel that the housing is mounted on. The ballasts and sockets carried by the power supply module are serviceable by either lowering the elevator drop ceiling carrying the assembly or by gaining access to the space above the drop ceiling panel and below a top panel or roof of an elevator. Generally, access may be gained to this space by removing an emergency exit door in the top panel of the elevator. In either case, the lamp housing canister is generally left supported on the drop ceiling panel as whatever component requiring servicing is then serviced. However, the lamp sockets and ballasts may first be removed from the lamp housing canister along with the power supply module by unfastening and removing the power supply module and withdrawing the lamps radially outwardly through the lamp openings in the canister wall. However, a downward illumination assembly constructed according to the Mandy '617 patent doesn't allow for removal of the power supply module or servicing of the ballasts and sockets without first having to either lower the ceiling panel carrying the assembly of gaining access to the approximate six inch deep space between the drop ceiling and roof of an elevator.
What would be desirable would be a downward illumination assembly that allows for removal of lamp socket and ballast without having to first lower a ceiling panel carrying the assembly or gaining access to a space between the ceiling panel and a roof disposed above the ceiling panel.
A downward illumination assembly is provided for directing light downward from the ceiling area of a room. The assembly includes a lamp housing having a housing wall extending downwardly to an open lower end configured to be positioned adjacent an opening in a ceiling panel. A power supply module is removably supported in an installed position on the housing and carries a lamp socket such that when the power supply module is in the installed position a lamp plugged into the lamp socket is disposed in a position to radiate light out the lower end of the lamp housing and through an opening in a ceiling panel that the housing is mounted on. The power supply module is configured to be removed interiorly of the lamp housing through the open lower end of the lamp housing. This allows the lamp socket and/or associated wiring to be serviced or replaced from a position below the ceiling panel and without having to remove the lamp housing from the ceiling panel or to disconnect and lower the ceiling panel or a portion of the ceiling panel from a supporting structure.
Also, a method is provided for servicing components housed in the power supply module of the downward illumination assembly when the assembly is carried by a ceiling panel. The method includes gaining access to an interior of the lamp housing through a lower opening of the lamp housing, removing the power supply module from its installed position interiorly of the lamp housing through the lower opening of the lamp housing, servicing a component carried by the power supply module, and returning the power supply module to its installed position on the lamp housing.
These and other features and advantages will become apparent to those skilled in the art in connection with the following detailed description and drawings of one or more embodiments of the invention, in which:
A downward illumination assembly for directing light downward from the ceiling area of a room is generally shown at 10 in the drawings. The assembly 10 may include a lamp housing 12 having a housing wall 14 extending downwardly to an open lower end 16 that is to be positioned adjacent and in general concentric alignment with an opening 18 in a ceiling panel 20 such as a drop ceiling panel 20 of an elevator 22. The assembly 10 may also include a power supply module 24 that is removably supported in an installed position on the lamp housing 12. The power supply module 24 may, in turn, carry two lamp sockets 26 in respective positions such that when the power supply module 24 is in the installed position, lamps 28 plugged into the lamp sockets 26 are disposed in respective positions within the lamp housing 12 to radiate light out the lower end 16 of the lamp housing 12 and through an opening 18 in a ceiling panel 20 that the housing 12 is mounted on. The power supply module 24 may be removable interiorly of the lamp housing 12 through the open lower end 16 of the lamp housing 12 to allow the lamp sockets and/or associated wiring to be serviced or replaced from a position below the ceiling panel 20 and without having to remove the lamp housing 12 from the ceiling panel 20 or to disconnect and lower the ceiling panel 20 or a portion of the ceiling panel 20 from a supporting structure.
As shown in
As shown in
As shown in
As shown in
As best shown in
As best shown in
An inner end 46 of the power supply module 24 includes two module mounting tabs 48 positioned to engage the lamp housing wall 14 adjacent the module receptacle opening 34. The module mounting tabs 48 may be positioned to engage or be engaged by respective module fasteners 50. As is best shown in
As shown in
The power supply module 24 includes a generally rectilinear box-shaped module enclosure 62. As best shown in
As shown in
The module enclosure box cover panel 74 is shaped to be fastened over the box opening 75 in the module enclosure box portion 64 without impeding sliding motion of the power supply module 24 along the module receptacle tray 36. More specifically, and as shown in FIGS. 3 and 10-13, the module enclosure box cover panel 74 includes inner and outer box cover tabs 91, 92 extending downwardly from respective inner and outer edges of the module enclosure box cover panel 74 and normal to the module enclosure box cover panel 74. The inner and outer box cover tabs 91, 92 each include respective tab through-holes aligned with corresponding end panel through-holes 96, 98 in the inner and outer box end panels 70, 72 of the module enclosure box portion 64, respectively. Two screws 100, 102 extend through the respective tab through-holes in the inner and outer box cover tabs 91, 92 and are threadedly engaged in the end panel through-holes 96, 98 in the respective inner and outer box end panels 70, 72 of the module enclosure 62 box portion 64. Because the inner and outer box cover tabs 91, 92 and screws 100, 102 are disposed on end surfaces of the power supply module 24 they provide no obstruction to the sliding motion of the power supply module 24 in the module receptacle tray 36.
The module enclosure 62 includes ventilation holes 104 formed in the box side panels 68 and the box cover panel 74 of the module enclosure 62 to ensure that the ballast 30 doesn't overheat in any installation location, e.g., the space between a roof 106 and drop ceiling panel 20 of an elevator 22. Heat rejection can otherwise be a problem in such an installation location because, as shown in
In practice, a component housed in the power supply module 24 of the downward illumination assembly 10 can be serviced by first gaining access to an interior of the lamp housing 12 through the open lower end 16 of the lamp housing 12. Where, as shown in
Any lamps plugged into the power supply module 24 are then unplugged from the module 24 and removed from the assembly 10 as shown in
Whatever power supply module component that requires servicing is then serviced and the power supply module 24 is returned to its installed position on the lamp housing 12. Reinstallation of the power supply module 24 may include passing the power supply module 24 outer end-first through the open lower end 16 of the lamp housing 12, through the module receptacle opening 34, and sliding the power supply module 24 radially outwardly along the module receptacle tray 36 into the installed position. The module fasteners are then re-engaged by screwing the two wing nuts 60 onto the threaded posts 56 of the module fasteners.
This apparatus and method allow a lamp socket and/or associated wiring of a power supply module 24 of a downward illumination assembly 10 to be serviced or replaced from a position below the ceiling panel 20 that the assembly 10 is mounted on—and without having to remove the lamp housing 12 from the ceiling panel 20 or disconnect and lower the ceiling panel 20 or a portion of the ceiling panel 20 from a supporting structure.
This description, rather than describing limitations of an invention, only illustrates one embodiment of the invention recited in the claims. The language of this description is therefore exclusively descriptive and is non-limiting. Obviously, it's possible to modify this invention from what the description teaches. Within the scope of the claims, one may practice the invention other than as described above.
Number | Name | Date | Kind |
---|---|---|---|
1767988 | Knapp | Jun 1930 | A |
2835791 | Horwitz | May 1958 | A |
3189788 | Cady | Jun 1965 | A |
3336473 | Buzan | Aug 1967 | A |
3808499 | Edwards | Apr 1974 | A |
4032828 | Strobl et al. | Jun 1977 | A |
4071749 | Balogh | Jan 1978 | A |
4156891 | Roche | May 1979 | A |
4218725 | Heffner et al. | Aug 1980 | A |
4223232 | Bulat | Sep 1980 | A |
4241871 | Newell, III et al. | Dec 1980 | A |
4271621 | Garcia et al. | Jun 1981 | A |
4441143 | Richardson, Jr. | Apr 1984 | A |
4504894 | Reibling | Mar 1985 | A |
4520436 | McNair et al. | May 1985 | A |
4587597 | Meyers | May 1986 | A |
4674015 | Smith | Jun 1987 | A |
4682078 | Pascilade | Jul 1987 | A |
4727291 | Bavaro | Feb 1988 | A |
4749908 | Stiffer | Jun 1988 | A |
4751398 | Ertz, III | Jun 1988 | A |
4802065 | Minter et al. | Jan 1989 | A |
4875553 | Smith et al. | Oct 1989 | A |
4890200 | Mandy | Dec 1989 | A |
4905579 | Dame | Mar 1990 | A |
4977818 | Taylor et al. | Dec 1990 | A |
5003432 | Mandy | Mar 1991 | A |
5025349 | Gow | Jun 1991 | A |
5123875 | Eubank et al. | Jun 1992 | A |
5145247 | Mandy | Sep 1992 | A |
5253152 | Yang et al. | Oct 1993 | A |
6102550 | Edwards, Jr. | Aug 2000 | A |
7066617 | Mandy et al. | Jun 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20090268435 A1 | Oct 2009 | US |