The invention relates to boat and ship steering and particularly to an apparatus for maneuvering at slow speeds.
Trolling is a method of fishing that uses a slow motion of a boat, rather than a cast & reel, to cause fishing lures to move through the water. Trolling allows the fisherman to use, multiple lines, at the same time, as well as to cover a larger area in a shorter amount of time.
According to one aspect, a steering control fin for mounting to a trolling motor includes a skin formed into a substantially symmetric closed fin shape having a fin width. The skin has a first end surface contoured to match the shape of a motor, and a trailing edge having an anti-rotation interlock cut-out near the first end surface. Each reinforcement collar of a pair of reinforcement collars is affixed to each of a first side and a second side of the steering control fin. Each reinforcement collar has a reinforcement collar surface that substantially matches the first end surface. An internal support structure is mechanically coupled to the first side and the second side of the steering control fin to provide a structural support which maintains the substantially symmetric closed fin shape. An end cap skin is mechanically coupled to a second end surface of the skin. One or more mounting straps are mechanically coupled to the skin and each of the reinforcement collars. The mounting straps mechanically affix the control fin to the trolling motor.
In one embodiment, the skin includes a metal.
In another embodiment, the metal includes galvanized steel or aluminum.
In another embodiment, the skin includes a non-metallic material such as plastic, carbon composite, or fiber glass.
In yet another embodiment, the skin includes an overlapping seam.
In yet another embodiment, the overlapping seam includes a plurality of rivets.
In yet another embodiment, the internal support structure includes one or more internal baffles.
In yet another embodiment, the internal support structure is mechanically coupled to the skin by a plurality or rivets.
In yet another embodiment, the one or more mounting straps include adjustable clamps.
In yet another embodiment, the fin width is more than about one tenth of a fin length dimension so as to cause substantial drag while allowing for maneuverability.
In yet another embodiment, the steering control fin further includes a plurality of depth indication marks on the skin.
In yet another embodiment, the steering control fin includes a forward edge and a trailing edge and the forward edge and the trailing edge are substantially symmetric fore and aft.
According to another aspect, a method of maneuvering a boat for fishing by trolling includes the steps of: providing a steering control fin mounted below a trolling propulsion unit by two or more radii of a trolling propulsion unit propeller below a bow or side mounted trolling propulsion unit of the boat, the steering control fin having a fin thickness that causes a substantial drag while allowing maneuverability; trolling at a relatively slow speed, by use of the substantial drag caused by the steering control fin; and changing a direction of the boat rapidly by steering the bow or side mounted trolling propulsion unit having the steering control fin affixed thereto for improved maneuverability.
In one embodiment, the step of changing direction of the boat further includes the step of steering a primary stem mounted motor or boat rudder while steering the bow mounted motor having the steering control fin affixed thereto for improved maneuverability.
In another embodiment, the step of changing direction of the boat includes steering the steering control fin by use of a foot pedal.
According to yet another aspect, a method of fishing by trolling with a foot directional controlled trolling motor having a steering control fin includes the steps of: providing a steering control fin extending more than two propeller radii below a trolling motor propeller, the steering control fin mechanically coupled to and mounted substantially below a bow mounted trolling motor of a boat, the steering control fin having a fin thickness that causes a substantial drag while allowing maneuverability; trolling at a relatively slow speed, by use of the trolling motor as modified by a substantial drag caused by the steering control fin; detecting a school of fish as indicated by a fish finder or two or more bites or nibbles by fish on two or more trolling lines within a predetermined length of time; and starting a main propulsion motor and changing a direction of the boat rapidly to remain in a vicinity of the school of fish by steering the steering control fin by a trolling motor direction control by foot operation irrespective of whether of the trolling motor is operating or not.
According to yet another aspect, a steering control fin for maneuvering a boat or ship includes a control fin mechanically coupled to and disposed substantially below a motorized propulsion unit of the boat or ship. The control fin extends more than two radii of a motorized propulsion unit propeller or in an absence of a propeller more than a height of the propulsion unit below the propulsion unit. The steering control fin is adapted to augment slow speed maneuvering of the ship.
In one embodiment, the propulsion unit includes a bow thruster.
In another embodiment, the boat or ship includes a hydrofoil.
The foregoing and other objects, aspects, features, and advantages of the invention will become more apparent from the following description and from the claims.
The objects and features of the invention can be better understood with reference to the drawings described below, and the claims. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the drawings, like numerals are used to indicate like parts throughout the various views.
As described hereinabove, trolling is a method of fishing that uses an outboard motor to cause lures to move through the water, rather than by cast & reel. Many modern boat hulls and outboard motors are designed for lowest possible drag in the water. One of the problems in trolling is that with such efficient hulls, it can be difficult to achieve desired slow speed trolling speeds through the water. Also, it can be difficult to maneuver boats at slow trolling speeds.
Bow mounted motors such as attachable electric bow mounted motor prop thrusters can be helpful in maneuvering a boat, however existing bow thrusters and bow trolling motors provide less maneuverability at trolling speeds than desired.
It was realized that a solution to the problem of slow speed maneuverability for trolling is to add a steering control fin that extends downward into the water from substantially below the body of a propulsion motor, such as a bow mounted electric trolling motor. The steering control fin can be made to have a relatively thick symmetric airfoil like shape to intentionally cause drag in the water at the bow of the boat. For additional convenience of operation, as known in the art, the direction of the bow trolling motor on a standard pivoting mount can be controlled by foot pedals or by any other suitable wired or wireless control means.
The steering control fin solution as described hereinbelow in more detail is counter-intuitive for a number of reasons. Typically fins mounted on motors and thrusters are about at the level of the prop, above the prop, or mostly at and above the prop, occasionally with a small portion of the fin extending below the prop or motor. One reason that fins have not been used below the motor is probably to limit draft to allow the boat or ship to traverse the shallowest possible waters without scraping the fin. However, it was realized that best trolling performance of desired additional drag and improved maneuverability can be achieved by extending the steering control fin downward from the bottom of the trolling motor with most of the steering control fin extending below the trolling motor. The downward extent of steering control fin with respect to concerns for achieving the best possible shallow draft can be somewhat mitigated by mounting the trolling motor assembly so that the motor and prop are just below the surface of the water. Another counter-intuitive aspect of the steering control fin is that rather than designing the steering control fin for best possible efficient movement through the water, it was realized that intentionally adding significant drag can be advantageous for best maneuverability during slow speed movement of a boat through the water, such as during trolling.
Example: In one exemplary embodiment for a steering control fin 100 to be mounted to a small fishing boat trolling motor, fin length dimension 402 can be about 16 inches, fin width dimension 404 can be about 8 ½ inches, and the fin thickness dimension 403 can be about 2 ¾ inches.
Example: An exemplary steering control fin as described hereinabove was implemented and tested with a trolling motor and prop.
In some embodiments, the steering control fin has a forward edge and a trailing edge and the forward edge and the trailing edge are substantially symmetric from fore to aft. In some embodiments, either of the forward edge and the trailing edge are tapered from near the propulsion unit to a distal end of the steering control fin farthest below the propulsion unit (e.g. a trolling motor). In other embodiments, both of the forward edge and the trailing edge are tapered from near the propulsion unit to a distal end of the steering control fin farthest below the propulsion unit (e.g. a trolling motor). Where both of the forward edge and the trailing edge are tapered, they may have the same taper or a different taper. Also, in some embodiments, the steering control fin can have an airfoil shaped body that is typically, but not necessarily symmetric side to side.
Trolling motors suitable for use with the steering control fin as described hereinabove include trolling motors made by MotorGuide™. Exemplary suitable MotorGuide™ trolling motors include the Xi5 series wireless-bow mounted trolling motors with foot pedal, the Xi5 series wireless-bow mounted trolling motors with sonar transducer, and the Xi5 series wireless-bow mounted trolling motors with sonar transducer and Pinpoint GPS with digital variable speed. Other exemplary suitable MotorGuide™ trolling motors include the X3 foot controlled bow mount series and the X3 hand operated series. Still other exemplary suitable trolling motors include the Minn Kota™ Maxxum digital bow mounted trolling motors, the Minn Kota™ pontoon hand-control series trolling motors, the Minn Kota™ i-Pilot wireless GPS trolling system, and the Minn Kota™ ST/Riptide SP trolling motors.
In some applications, ranging from small trolling motors to larger steering control fins for commercial ship applications, it is contemplated that the steering control fin can be retractable so as to be retracted when not in use.
It is also contemplated that one or more steering control fins can be mounted on the side of a vessel instead of, or in addition to a bow mounted steering control fin.
It is also contemplated that the steering control fin of the instant application can be applied to an auxiliary propulsion unit of a larger vessel ranging from a large boat to ships and naval vessels. For example, a steering control fin with additional support and/or structural features as known in the art of naval architecture could be attached to an Azipod™ type propulsion unit available from the ABB Corporation.
While propulsion units ranging from small trolling motors to Azipods™ may have existing small fins, typically such small fins extend only to about the radius of the propeller, or a small distance beyond. Such small fins add little to vessel maneuverability and generally are more important to protect the propeller or a propulsion pod, such as, for example, by operating as a skid to keep the propeller from contacting a bottom surface obstruction. By contrast, it was realized as described herein, that in some embodiments, adding a more significant length fin that extends more than one propeller radius below the propeller or propulsion unit, or in other embodiments, which extends two or more propeller radii below the propulsion unit, the fin becomes a steering control fin which significantly improves vessel maneuverability at slow vessel speed. In some embodiments, the steering control fin extends more than three propeller radii below the propeller of a trolling motor. In propulsion units using other propulsion technologies than propellers, a steering control fin can extend one or more, two or more, or three or more radii or height dimension of the housing of the propulsion unit. In addition to attachment below an auxiliary propulsion unit, a steering control fin as described herein, again with additional support and/or structural features as known in the art of naval architecture is also believed applicable to auxiliary propulsion units of hydra-foil vessels of any size.
Method: A method of trolling includes the steps of providing a steering control fin mounted substantially below a trolling motor and having a sufficient fin thickness to cause a drag; trolling at a relatively slow speed, slower than without the drag of the steering control fin; and changing a direction of the boat rapidly by changing the direction of the trolling motor having the steering control fin affixed thereto. Further maneuverability can be achieved by combining steering action from a main motor direction and or the rudder of the boat combined with the directional control of the steering control fin, such as a bow mounted steering control fin. Also, as known in the art, the trolling motor direction can be set by a foot pedal.
According to another method of fishing by trolling: maneuvering a boat for fishing by trolling includes the steps of: providing a steering control fin mounted below a trolling propulsion unit by two or more radii of a trolling propulsion unit propeller below a bow or side mounted trolling propulsion unit of the boat, the steering control fin having a fin thickness that causes a substantial drag while allowing maneuverability; trolling at a relatively slow speed, by use of the substantial drag caused by the steering control fin; and changing a direction of the boat rapidly by steering the bow or side mounted trolling propulsion unit having the steering control fin affixed thereto for improved maneuverability.
According to yet another method of fishing by trolling with a foot directional controlled trolling motor having a steering control fin comprising the steps of: providing a steering control fin extending more than two propeller radii below a trolling motor propeller, the steering control fin mechanically coupled to and mounted substantially below a bow mounted trolling motor of a boat, the steering control fin having a fin thickness that causes a substantial drag while allowing maneuverability; trolling at a relatively slow speed, by use of the trolling motor as modified by a substantial drag caused by the steering control fin; detecting a school of fish as indicated by a fish finder or two or more bites or nibbles by fish on two or more trolling lines within a predetermined length of time; and starting a main propulsion motor and changing a direction of the boat rapidly to remain in a vicinity of the school of fish by steering the steering control fin by a trolling motor direction control by foot operation irrespective of whether of the trolling motor is operating or not.
While the present invention has been particularly shown and described with reference to the preferred mode as illustrated in the drawing, it will be understood by one skilled in the art that various changes in detail may be affected therein without departing from the spirit and scope of the invention as defined by the claims.
This application claims priority to and the benefit of co-pending U.S. Provisional Patent Application Ser. No. 62/028,440, DOWNWARDLY MOUNTED DRAG INDUCING STEERING CONTROL FIN, filed Jul. 24, 2014, which application is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62028440 | Jul 2014 | US |