The present disclosure generally relates to work vehicles, such as skid steers, compact track loaders, and more particularly to a dozer blade for a work vehicle.
In order to control grade of a surface for a dozer blade having pitch, tilt, and angle adjustment interactions, multiple passes are commonly required to correct grade error due to the interactions.
In one embodiment, a work vehicle is disclosed. The work vehicle comprises a frame. At least one ground engaging device is coupled to the frame and configured to support the frame above a surface. A boom assembly is coupled to the frame. At least one boom cylinder is coupled to the frame and the boom assembly and configured to move the boom assembly. An attachment coupler is coupled to a distal portion of the boom assembly. At least one tilt cylinder is coupled to the boom assembly and the attachment coupler. The tilt cylinder is configured to move the attachment coupler. The tilt cylinder has a fully extended position, a mid-stroke position, and a fully retracted position. An attachment is coupled to the attachment coupler. The attachment comprises an attachment frame coupled to the attachment coupler. The attachment frame has a lower portion, an upper portion, a forward surface, and a trailing surface. The attachment further comprises a dozer blade that has an operating position where the tilt cylinder is in the mid-stroke position and a raised position where the tilt cylinder is in the fully retracted position. A joint is coupled to the lower portion of the attachment frame and the dozer blade. The joint has a lower surface and an upper surface. The lower surface is positioned a distance from the surface. At least one angle cylinder is coupled to the lower portion of the attachment frame and the dozer blade. A portion of the angle cylinder is positioned below the upper surface of the joint.
In another embodiment, a work vehicle is disclosed. The work vehicle comprises a frame. At least one ground engaging device is coupled to the frame and configured to support the frame above a surface. A boom assembly is coupled to the frame. At least one boom cylinder is coupled to the frame and the boom assembly and configured to move the boom assembly. An attachment coupler is coupled to a distal portion of the boom assembly. At least one tilt cylinder is coupled to the boom assembly and the attachment coupler. The tilt cylinder is configured to move the attachment coupler. The tilt cylinder has a fully extended position, a mid-stroke position, and a fully retracted position. An attachment is coupled to the attachment coupler. The attachment comprises an attachment frame coupled to the attachment coupler. The attachment frame has a lower portion, an upper portion, a forward surface, and a trailing surface. The attachment further comprises a dozer blade. The dozer blade has an operating position where the tilt cylinder is in the mid-stroke position and a raised position where the tilt cylinder is in the fully retracted position. A joint is coupled to the lower portion of the attachment frame and the dozer blade. The joint has a lower surface and an upper surface. The lower surface is positioned a distance from the surface. At least one angle cylinder is coupled to the lower portion of the attachment frame and the dozer blade. A portion of the angle cylinder is positioned below the upper surface of the joint.
In yet another embodiment, a work vehicle is disclosed. The work vehicle comprises a frame. At least one ground engaging device is coupled to the frame and configured to support the frame above a surface. A boom assembly is coupled to the frame. At least one boom cylinder is coupled to the frame and the boom assembly. The boom cylinder is configured to move the boom assembly. An attachment coupler is coupled to a distal portion of the boom assembly. At least one tilt cylinder is coupled to the boom assembly and the attachment coupler. The tilt cylinder is configured to move the attachment coupler. The tilt cylinder has a fully extended position, a mid-stroke position, and a fully retracted position. An attachment is coupled to the attachment coupler. The attachment comprises an attachment frame coupled to the attachment coupler. The attachment frame has a lower portion, an upper portion, a forward surface, and a trailing surface. The attachment further comprises a dozer blade. The dozer blade has an operating position where the tilt cylinder is in the mid-stroke position and a raised position where the tilt cylinder is in the fully retracted position. A joint is coupled to the lower portion of the attachment frame and the blade. The joint has a lower surface and an upper surface. The lower surface is positioned a distance from the surface. A blade tilt cylinder is coupled to the upper portion of the attachment frame and the dozer blade. An adjustable linkage is coupled to the upper portion of the attachment frame and the dozer blade. At least one angle cylinder is coupled to the lower portion of the attachment frame and the blade. A portion of the angle cylinder is positioned below the upper surface of the joint.
Other features and aspects will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments are explained in detail, it is to be understood that the disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Further embodiments of the invention may include any combination of features from one or more dependent claims, and such features may be incorporated, collectively or separately, into any independent claim.
As used herein, unless otherwise limited or modified, lists with elements that are separated by conjunctive terms (e.g., “and”) and that are also preceded by the phrase “at least one of” or “one or more of” indicate configurations or arrangements that potentially include individual elements of the list, or any combination thereof. For example, “at least one of A, B, and C” or “one or more of A, B, and C” indicates the possibilities of only A, only B, only C, or any combination of two or more of A, B, and C (e.g., A and B; B and C; A and C; or A, B, and C).
An operator's station 40 is coupled to the frame 15. The operator's station 40 may have a door (not shown).
A boom assembly 45 is coupled to the frame 15. The boom assembly 45 comprises a pair of upper links 50 that are coupled to the frame 15. A pair of lower links 55 are coupled to the frame 15. A pair of boom cylinders 60 are coupled to the frame 15 with one per side of the work vehicle 10. The boom cylinders 60 may be hydraulic actuators 65 or electronic actuators 70. A pair of boom arms 75 are coupled to the upper links 50 and the lower links 55 and positioned one per side of the work vehicle 10. The pair of boom arms 75 are coupled to the boom cylinders 60. The boom cylinders 60 are configured to move the boom assembly 45.
Referring to
With continued reference to
With reference to
With continued reference to
The blade 170 may be a dozer blade 215. The dozer blade 215 may have the operating position 145 where the tilt cylinder 90 is in the mid-stroke position 100 and the raised position 155 (
Referring to
A horizontal joint centerline 230 of the joint 165 may be offset 37 mm or less from a horizontal angle cylinder centerline 235 of the angle cylinder 200. Advantageously, this helps to reduce cross-functional interactions such as unwanted blade 170 tilt during angle movement, for example, which improves the precision of controlling grade of the surface 30 with less passes of the work vehicle 10. Alternatively, the angle cylinder 200 may be positioned such that the horizontal angle cylinder centerline 235 and the horizontal joint centerline 230 are coincident lines with no offset (not shown) to reduce cross-functional interactions.
With reference to
An adjustable linkage 250 may be coupled to the upper portion 125 of the attachment frame 115. The adjustable linkage 250 may include threads 252 for manual adjustment. Alternatively, the adjustable linkage 250 may be a hydraulic actuator 253 or an electronic actuator 254. The adjustable linkage 250 may be coupled to the blade 170 at a fourth axis of rotation 255 that lies in a second plane 260 (
Referring to
Number | Name | Date | Kind |
---|---|---|---|
3913684 | Casey et al. | Oct 1975 | A |
4405019 | Frisbee | Sep 1983 | A |
5732781 | Chambers | Mar 1998 | A |
6542789 | Ufheil | Apr 2003 | B2 |
7036248 | Meyeres et al. | May 2006 | B2 |
7099722 | Casey | Aug 2006 | B2 |
8118111 | Armas | Feb 2012 | B2 |
10533300 | Armas | Jan 2020 | B1 |
20050000709 | Werner | Jan 2005 | A1 |
20090118844 | Schmuck et al. | May 2009 | A1 |
20110067893 | Liebl et al. | Mar 2011 | A1 |
20140345889 | Nakata | Nov 2014 | A1 |
20160032564 | Pinther, II et al. | Feb 2016 | A1 |
20160244940 | Shimada | Aug 2016 | A1 |
20160273196 | Funk et al. | Sep 2016 | A1 |
20170145655 | Mason | May 2017 | A1 |
20180058038 | Fredrickson | Mar 2018 | A1 |
20180179735 | Newlin et al. | Jun 2018 | A1 |
20180238016 | Seacat | Aug 2018 | A1 |
20180245306 | Lewis | Aug 2018 | A1 |
20190257057 | Eckrote | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
2885399 | Sep 2016 | CA |
2722445 | Apr 2014 | EP |
3363955 | Aug 2018 | EP |
WO2015065703 | May 2015 | WO |
Entry |
---|
German Search Report issued in counterpart application No. 102020202222.4 dated Nov. 4, 2020 (10 pages). |
Number | Date | Country | |
---|---|---|---|
20200270843 A1 | Aug 2020 | US |