The present invention relates to a draft device comprising a draft roller that feeds a bundle of fibers (also referred to as a sliver) while pulling the bundle (this operation is also referred to as “drafting”).
As a conventional draft device, a roller draft device is known which is composed of a plurality of roller pairs that pull a sliver while nipping and feeding the sliver downstream.
Further, the roller draft device has a plurality of roller pairs each composed of a top roller and a bottom roller, and disposed in a direction in which a sliver is fed. For the drafting, the roller pairs are rotated at different rotation speeds so that the rotation speed of one roller pair is slightly higher than that of the preceding one. A draft cradle is disposed which temporarily holds and supports each top roller so that the top roller can be contacted with and separated from the corresponding bottom roller.
The top roller is a rubber roller or a roller covered with rubber. The bottom roller is made of metal. Further, a force that grips the bottom and top rollers is important in reliably drafting the sliver. Accordingly, the top roller is pressed and abutted against the fixedly installed metallic bottom roller.
For example, various spinning devices are well known to manufacture a spun yarn by drafting a sliver (a bundle of fibers). Recently, spinning machines are known which comprise a hollow guide shaft (a hollow spindle) and a spinning nozzle and which can carry out spinning at a high speed of at least 300 m/min. In spinning machines feeding a sliver or a spun yarn at the high speed and represented by the recent ones, drafting is also carried out at a high speed to increase the rotation speed of each draft roller. In particular, the peripheral speed of a front roller that is a feeding roller located at a draft terminal increases significantly. This also increases the adverse effect of associated air currents generated around a peripheral surface of the front roller, which rotates at the high speed. Thus, disadvantageously, the quality of a spun yarn obtained varies and is unstable.
Thus, for the high-speed spinning device, a front top roller for a draft device has been disclosed which has its opposite ends cut by a large length to reduce an effective roller width to about half in order to prevent fibers from being diffused by associated air currents. Further, a draft device has been disclosed in which thin grooves are formed in the front top roller to provide channels for the associated air currents in order to prevent the fibers from being spread by the associated air currents.
The rotation speed of the front roller has been sharply increasing consistently with the speed at which the sliver or spun yarn is fed. Thus, the high speed rotation has often affected even draft devices using a well-known front roller of a grooved roller type.
Specifically, for relatively low spinning speeds used in the prior art, a draft roller composed of a grooved bottom roller and top roller made of rubber has been considered to be suitable for preventing the effect of associated air currents. However, it has been found that at increased feeding speeds, the associated air currents are diffused in a horizontal direction (the axial direction of the roller), thus affecting the physical properties of the spun yarn.
Thus, in the draft device intended to prevent the diffusion of fibers caused by associated air currents, a space or a groove portion is formed to allow the associated air currents to escape in a direction in which the paired front rollers are rotated; the associated air currents otherwise escape in the axial direction from the vicinity of the nip point between the paired front rollers, which rotate at high speed. However, this technique does not positively utilize the associated air currents to align the fibers with one another in the feeding direction, the fibers otherwise escaping in the horizontal direction.
It is an object of the present invention to provide a draft device comprising draft rollers which, when a draft device composed of a plurality of draft roller pairs is used, can reduce the adverse effect of associated air currents resulting from the rollers rotating at high speed while maintaining a gripping force and can effectively utilize the associated air currents to suppress the spread of a bundle of fibers.
To accomplish this object, a first aspect of the present invention provides a draft device comprising a plurality of roller pairs that pull a bundle of fibers while feeding the bundle downstream, characterized in that gaps are provided at ends of roller constituting roller pair, which are passed through associated air currents resulting from rotation of the roller and form air passages in which said air currents act as air flows forming a prevention wall that hinders spread of the bundle of fibers fed while being drafted.
With the first aspect of the present invention configured as described above, even if fast whirling associated air currents result from the high speed rotation of the rollers, they form fast whirling air currents flowing in the feeding direction of the bundle of fibers from the step portions, formed at the respective roller ends. This serves to suppress the horizontal spread of the bundle of fibers fed while being drafted.
A second aspect of the present invention is characterized in that the gaps are steps formed in one of the rollers constituting the roller pair, and has a clearance of at least 1 mm and at most 3 mm and a width of at least 6 mm.
With the second aspect of the present invention configured as described above, the steps are formed in one of the rollers. It is thus possible to form gaps that reliably feed the fast whirling associated air currents resulting from the high speed rotation of the rollers.
A third aspect of the present invention is characterized in that the roller in which the steps are formed is a rubber roller having a rubber thickness of at least 3.5 mm, and steps of height about 1.5 mm and width about 7 mm are formed at respective ends of the roller.
With the third aspect of the present invention configured as described above, a force that grips the drafted bundle of fibers is maintained. Further, the associated air currents do not disturb the bundle of fibers in spite of the high speed rotation of the rollers.
A fourth aspect of the present invention is characterized in that the draft device is a roller draft device applied to a spinning machine comprising a pneumatic spinning section that generates a spun yarn using whirling air currents.
With the fourth aspect of the present invention configured as described above, the draft device is used in a pneumatic spinning machine capable of spinning at high speed and comprises the front roller which reliably grips the sliver and which does not disturb the surrounding air during high speed rotations.
As described above, according to the present invention, even in a spinning machine that carries out spinning at high speed using a roller draft device, a bundle of fibers is not disturbed which is fed while being drafted by associated air currents resulting from the high speed rotation of rollers. Further, the bundle of fibers is nipped using a gripping force insufficient to cause draft unevenness. This prevents the degradation of the physical properties of a spun yarn.
The present invention uses the configuration described below to accomplish the object to obtain a draft device comprising draft rollers which can reduce the adverse effect of associated air currents resulting from the rollers rotating at high speed while maintaining a gripping force and can effectively utilize the associated air currents to suppress the spread of a bundle of fibers. Steps are formed at respective ends of one of the rollers constituting a roller pair. Associated air currents resulting from the rotation of the rollers are passed through the steps. Further, the air currents passed through the steps form a prevention wall that hinders the spread of the bundle of fibers fed while being drafted.
With reference to
First, with reference to
Further, as shown in
The spinning section Sp is formed of a pneumatic spinning device comprising a spinning nozzle and a hollow guide shaft and which is capable of fast spinning at a spinning speed of at least 300 m/min. However, the present invention is not limited to this aspect. The spinning device may comprise a two-stage pneumatic spinning nozzle. Alternatively, the spinning device may comprise a spinning and paired twisting rollers and may be capable of fast spinning at a spinning speed of several hundred m/min.
Moreover, the present invention is applicable to a draft device such as an other fine spinning frame, a fly frame, or a drawing frame which carries out spinning at high speed.
As shown in
The draft device DR drafts the sliver to a predetermined thinness, the sliver being supplied through the trumpet T, that is, a guide through which the sliver L is passed. Drafting is carried out by feeding the sliver L among the rollers, the rotation speed of which gradually increases from the most upstream roller to the most downstream roller. The sliver L drafted to a predetermined thinness is supplied to the spinning section Sp, in which it is formed into a spun yarn Y.
The vertical pair of rollers constituting each roller is composed of a bottom roller disposed in a main body frame of the spinning machine and a top roller configured to freely contact with and separate from the bottom roller.
The top rollers including a back top roller Rb1, a third top roller Rt1, a middle top roller Rm1, and a front top roller Rf1 are integrally installed on a draft cradle 6. When the whole draft cradle 6 moves rotatively using a support shaft 8 as a rotational center, each top roller contacts with or separates from the corresponding bottom roller.
This rotative moving operation is performed by gripping a handle 9. When the draft cradle 6 is lowered, a hook portion 9a formed at a lower end of the handle 9 is engaged with a fixed roller 10. This allows the maintenance of the pressure contact between the vertical pair of the top and bottom rollers constituting each draft roller. This configuration is the same as that of a well-known roller draft device.
The distance between the draft rollers depends on the length of fibers constituting the sliver L passed through the rollers while being drafted. This distance is a dimension reexamined every time the quality of the sliver L, a spinning material, is changed. Thus, the front bottom roller Rf2 is fixed to the frame 11, while the middle bottom roller Rm2, the third bottom roller Rt2, and the back bottom roller Rb2 slidably move in the directions of arrows in
Further, a side guide 7 in which predetermined inter-roller pitches are disposed is installed on the draft cradle 6. The top rollers are integrally installed in the side guide 7 in accordance with the predetermined inter-roller pitches. Thus, to change the distance between the top rollers, it is necessary to change to a side guide 7 with new pitches. In this case, the position of the front roller Rf is fixed and can be used as a reference when the distance between the top rollers is changed.
The spinning device uses the draft device DR to draft the sliver L, an aggregate of short fibers, to a predetermined thinness. The spinning device then uses the spinning section to twist the sliver L to form a spun yarn Y. Thus, as the spinning speed increases, the short fibers constituting the sliver L are likely to scatter at the front roller Rf, the final feeding roller of the draft device DR, owing to associated air currents generated around the peripheral surface of the fast rotating front roller. Further, when spinning is carried out with the short fibers scattering, the thickness of the spun yarn Y obtained varies and the yarn quality is degraded.
Now, with reference to
A predetermined gripping force is required to reliably grip the bundle of fibers. When the front top roller Rf1 is pressed against the front bottom roller Rf2, a predetermined amount of the rubber layer 4 of the front top roller Rf1 must be pressed and deformed. Thus, the thickness A of the front top roller Rf1 must have a predetermined value or more.
Moreover, as the spinning speed becomes high and thus the rotation speed of the front roller increase, associated air currents are generated around the peripheral surface of the roller rotating at high speed. Further, the associated air currents generated around the peripheral surface of the roller diffuse in the axial direction (horizontal direction) from the nip point between both rollers. Thus, the bundle of fibers conveyed while being drafted is also diffused in the horizontal direction.
In the present embodiment, to prevent the horizontal diffusion of the bundle of fibers conveyed while being drafted and then fed to the spinning section Sp, steps 5 are formed at respective ends of the front top roller Rf1 so as to form gaps. Accordingly, air currents passing through the gaps form a prevention wall that inhibits the diffusion of the bundle of fibers.
Experiments on spinning and measurements of air flows were carried out by varying the size of the steps. It was then found not only that the associated air currents generated around the peripheral surface of both rollers do not disturb the bundle of fibers but also that a predetermined step size can be used to prevent the diffusion of the bundle of fibers even with the use of the associated air currents.
The clearance B of the gap formed by each of the steps 5 was varied among 0 mm, 0.5 mm, 1.0 mm, 1.5 mm, 2.0 m, 2.5 mm, 3.0 mm, and 3.5 mm. A width C was varied among 5 mm, 6 mm, 7 mm, and 8 mm. Then, the physical properties of the resulting spun yarn were measured. Moreover, the thickness A of the rubber layer was varied among 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, and 4.5 mm. Then, comparisons of the yarn physical properties and the air flows were carried out.
As a result, with a spinning machine in which the spinning section Sp comprising the pneumatic spinning device including the spinning nozzle and hollow guide shaft, favorable results were obtained when the clearance B was at least 1 mm and at most 3 mm and when the width was at least 6 mm. Further, in particular, a draft roller in which steps of clearance about 1.5 mm and width about 7 mm were formed was found to produce a spun yarn with stable and favorable yarn physical properties.
This is because, in the spinning device comprising the spinning nozzle provided at the outlet of the front roller Rf and having a suction force, the front roller section is provided with the steps 5, constituting gaps capable of forming air passages in which the associated air currents resulting from the high speed rotation of the front top roller Rf1 and front bottom roller Rf2, constituting the front roller Rf, can be utilized as air flows suppressing the horizontal diffusion of the bundle fibers fed while being drafted.
Further, as shown in
The air flows will further be described with reference to
Of course, the air currents F2 vary depending on the shape of the gaps formed by the steps 5. However, when spinning is carried out at a high speed exceeding 300 m/min, the formation of air passages of clearance B about 1.5 mm and width about 7 mm makes it possible to generate the air currents F2 suppressing the horizontal diffusion of some short fibers of the sliver L. That is, the air currents F2 form a prevention wall that inhibits the spread of the bundle of fibers fed while being drafted.
Further, a nonuniformity ratio (which indicates the level of unevenness of the yarn in the form of U %) as a physical property of the spun yarn Y may be associated with the diffusion of some fibers or draft unevenness by high speed drafting. To suppress the draft unevenness, it is important to maintain the force exerted by the draft roller section to grip the sliver, at a predetermined value.
Thus, the air currents F2 must not only be formed to suppress the diffusion of some fibers but a predetermined rubber thickness A must be provided in order to maintain the force that grips the sliver. The results of experiments indicate that the spun yarn Y with a low U % was obtained using a rubber thickness of at least 3.5 mm.
With reference to
The Thin (−50%) represents the number of parts of the yarn which have a thickness smaller than the average value by at least 50%, the parts being included within a yarn length of 1000 m (1 km). For the thin (−50%), a larger number indicates a larger number of thin parts. That is, a larger number indicates that the spun yarn Y contains a larger number of defective parts resulting from the diffusion of some fibers or the draft unevenness.
The yarn physical properties shown in
That is, by forming steps in one of the front top roller Rf1 and front bottom roller Rf2, constituting the front roller Rf, and setting the rubber thickness of the rubber roller at 3.5 mm or more, it is possible to obtain an even spun yarn Y with favorable physical properties even if the spinning is executed at a high speed of at least 300 m/min. Of course, it is allowable to form steps in both rollers so that the whole steps form a gap of a predetermined size.
However, it is preferable to form a gap of a predetermined size by creating steps of a predetermined size in the front top roller Rf1, made of rubber, which is relatively soft, because machining is easier.
As can be seen in the figure, the yarn strength is 220 cN in the test B1, 223 in the test B2, and 228 in the test B3. Accordingly, there is no significant difference in yarn strength between the tested yarns; the yarn strength is comparable among the tested yarns. However, significant differences were observed in the nonuniformity ratio U %, Thin (−50%), and the like. In particular, the value Thin (−50%), indicating excessively thin parts, is 155 in the test B3 but 340 in the test B1, which is more than twice worse than the value in the test B3. Thus, significant differences are observed in operability such as the number of times that yarn breakage occurs during spinning (7 times in the test B3 and 13 times in the test B2 but 25 times in the test B1) and the number of times that yarn breakage occurs during a warper process following a spinning process. In any case, without the steps (the case of the test B1), yarn breakage occurs extremely frequently, thus degrading the operability.
In
In C-4, in which the clearance B is 0.5 mm, many of the associated air currents are air currents fa escaping in the horizontal direction, while there are few air currents fb flowing in the feeding direction of the sliver. In C-3, in which the clearance B is 1.5 mm, there are very few air currents fa escaping in the horizontal direction, while there are many air currents fb flowing in the feeding direction of the sliver. In this case, some of the associated air currents are associated currents fc resulting from the rotation of the roller. Further, in C-2 and C-1, there are few air currents fa escaping in the horizontal direction, while the number of associated currents fc resulting from the rotation of the roller increases.
In
The above results of simulation also indicate that problems occur both when the clearance B is too small and when it is too large and that the optimum clearance B is about 1.5 mm.
As described above, the draft device according to the present invention prevents a sliver fed while being drafted from being diffused and disturbed by associated air currents generated around the peripheral surface of a fast rotating front roller even when spinning is carried out at high speed. To accomplish this, the draft device according to the present invention comprises a front top roller in which steps deflecting and converting associated air currents into air currents flowing in the feeding direction of a sliver are formed, the roller having a predetermined rubber thickness. As a result, the draft device has a gripping force insufficient to cause draft unevenness.
Moreover, in the draft device, the steps are formed in the front top roller made of rubber. Therefore, not only machining but also a replacing operation are facilitated.
Number | Date | Country | Kind |
---|---|---|---|
2003-344688 | Oct 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3212168 | Sommer | Oct 1965 | A |
3381350 | Kemmler | May 1968 | A |
4718225 | Sanagi | Jan 1988 | A |
5553357 | Kim et al. | Sep 1996 | A |
6021548 | Temburg | Feb 2000 | A |
Number | Date | Country |
---|---|---|
4-37271 | Mar 1992 | JP |
07-126926 | May 1995 | JP |
7-126926 | May 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20050072136 A1 | Apr 2005 | US |