The present invention relates to railcar coupling systems, and more particularly to rail car connection assemblies comprising draft gears and draft sills and couplers in railcars.
Rail cars are interconnected by couplers attached to draft gear assemblies at the ends of adjoining railroad freight cars. The draft gear assembly is disposed in the draft sills at the ends of the freight cars. The draft sills are commonly cast or fabricated sills that are mounted at the ends of the center sills of the railcar. The sidewalls of the draft sill each have a front stop and a rear stop, with a draft gear pocket between the stops. The draft gear assembly is received in the draft gear pocket. The draft rear is connected to the coupler and adapted to transfer motion to the car while absorbing impacts from train action events. A front resilient member cushions the coupling from impacts caused by draft events where the coupling is pulled away from the car. A rear resilient member is built into the draft gear to protect the coupling from buff events where the coupling is forced toward the car. This movement of the coupling causes an expansion and compression of the resilient members and movement of the yoke and followers of the draft gear.
The components of the draft gear may deflect from the axis of the draft sill causing the yoke, followers or resilient members to come in contact with the draft sill sidewalls inside the draft gear pocket. This contact can be very severe causing damage to the draft sill. The damage increases the maintenance and reduces the service time for the car. Draft sills are adapted to allow replacement of the draft gear and coupling but, draft sill repair requires more time and labor.
Rail car coupling systems such as the Rail Car Gear Assembly and System disclosed and claimed in U.S. Pat. No. 6,446,820 and the Common Cast Draft Sill for Type E and F Draft Gear disclosed and claimed in U.S. Pat. No. 6,986,432 are commonly owned by the assignee of the present invention Amsted Industries, Inc., are hereby incorporated in their entirety. These systems comprise a steel draft sill having the draft gear mounted therein.
In the '820 patent for the Rail Car Gear Assembly and system discloses and claims an improved dampening system for use in absorbing shock caused by the impact of cars in a start or stop condition or during a changing load. Each draft gear assembly is connected to one coupler, and couplers of adjacent rail cars are connected to form the train. The train may be hundreds of cars long and drawn by one or more locomotives. Typically, there is a limited amount of slack or free movement allowed between the cars; generally there is about two (2) inches of slack. This slack permits the rail cars limited movement toward and away from each other in response to train action and yard impact events. The integrity of the draft sill is important for safety reduced operating cost and performance. Excess wear on the inside of the sidewalls of the draft sills causes premature failure or increased maintenance.
The '432 patent discloses and claims a draft sill having a common design for use with E and F type draft gear. The '432 patent has common design features to reduce the components needed to maintain rail cars. The '432 patent discloses and claims a draft sill for use with more than one design of draft gear.
Train action events include, for example: locomotive start up and acceleration, moving up and down inclined terrain, dynamic braking, differences in braking forces of adjacent cars, and gravity-induced movement of the cars as the train moves onto and away from inclines. Yard impact events include “humping” of the individual cars to build the train in the yard; in humping, a car is pushed over a hump in the track in the yard, released and allowed to roll down the incline of the hump toward an awaiting car; during humping, the released cars can reach speeds of 4-10 mph and can severely impact the coupler of the awaiting car.
Train action and yard impact events both subject the couplers of the cars to buff impacts, and train action events also subject the couplers to draft impacts. These impacts are transmitted from the couplers to the draft gear assemblies to the rail car body. That is, as the couplers are pulled or pushed, the movement is translated to the freight car body through the draft gear assemblies. Typical draft gear assemblies include a yoke element that is connected to the coupler through a pin or key, a coupler follower and a draft gear, as well as other elements. Generally, the coupler follower is positioned against or closely spaced from the butt end of the coupler in the draft gear pocket, within the yoke. The draft gear is positioned between the coupler follower and the rear stops of the draft sill; other elements, such as a wedge, may be interposed between the draft gear and the coupler follower.
In buff events, the butt end of the coupler moves inward against the coupler follower toward the rear stops of the draft sill. As the coupler and coupler follower are moved rearward, the shock of the movement is transferred to the draft gear. The draft gear typically absorbs and dissipates some of the energy from this shock through friction. Friction within the draft gear is acceptable as a means for absorbing the impact because the draft gear is replaceable. Friction between the draft gear and the draft sill is not acceptable as it causes damage to the draft sill that is harder and more expensive to repair or replace.
In draft events, slack is taken up between adjacent cars beginning at one end of the train and ending at the other end of the train. As a result of the slack being progressively taken up, the speed differences between the railcars increases as the slack at each coupler pair is taken up, with a resultant increase in buff and draft impacts on the couplers. For instance, during locomotive acceleration of a 50-car train from rest there is a total of 100 inches of slack between the 50 pairs of couplers in the train. This slack is taken up progressively, coupler pair by coupler pair. When the 2 inch slack in the coupler pair joining the last car to the train is taken up the next to the last car may be moving at a speed of 4 miles per hour. The slack in the last coupler pair is taken up very rapidly and the last two cars are subjected to a very large impact capable of injuring the lading or the car. The impact causes the resilient members of the draft gear to expand or compress creating a possible frictional engagement between parts of the draft gear and the sidewalls of the draft sill causing damage.
Various types of draft sill have been proposed and used. In U.S. Pat. No. 5,931,101 issued on Aug. 3, 1999 to Kaufhold et al. for an invention a LIGHT WEIGHT DRAFT SILL is commonly owned by Amsted Industries, Inc., the assignee for the present application for patent. The '101 patent discloses and claims a draft sill that is lighter weight by removing material in specific locations on the draft sill. The draft sill may still be susceptible to failure due to wear between the draft gear and the draft gear because of less steel used to reduce weight. Accordingly there is a need for an invention to protect the draft sill from damage by the movement of the draft gear. The patent U.S. Pat. No. 5,931,101 for a LIGHT WEIGHT DRAFT SILL is hereby incorporated in its entirety in this application.
Some draft gear assemblies employ mechanical springs and steel friction members held in a steel housing that is received in a yoke (
The present invention addresses the problems incident to train action and yard impact events as it affects the coupling of two cars together and problems with the impact on couplers during operation of the rail car causing wear on the draft sill. The present invention addresses these problems in a manner that is useful in applications such as freight, tank cars, grain cars and coal cars, where it is desirable to protect the railcar, by protecting the integrity of the coupling assembly, from damage due to train action and yard impact events. The present invention may be used in other applications as well.
In one aspect, the present invention provides a rail car coupling assembly comprising a draft sill, a draft gear assembly and a draft sill liner between the draft gear and the draft sill. The liner for use with railcars having coupler members. The draft sill comprising a front or outboard end, two side walls, a top and a bottom. The draft gear assembly has front and back ends and comprises a yoke, a coupler follower, at least one front resilient member, and at least one back resilient member. The yoke has a back wall, a top wall extending from the back wall toward the front end of the draft gear assembly, and a bottom wall extending from the back wall toward the front end of the draft gear assembly. The coupler follower is positioned between the back wall of the yoke and the front end of the draft gear assembly. The front resilient member is positioned between the front end and the back wall of the yoke. The back resilient member is positioned between the back wall and the back end of the draft sill. The front and back resilient members are compressible. The liner is disposed intermediate the draft gear and the draft sill side walls to hold the draft gear and the side walls in spaced relation to each other and protect the draft sill from wear or damage.
In another aspect, the present invention provides a liner for use with a railcar having a coupler member, a draft gear, and a draft sill. The draft sill having front and rear stops defining a draft gear pocket to receive at least part of the draft gear assembly. The liner is disposed in the draft gear pocket extending along the length of the pocket between the front stops and rear stops adjacent the inside of each of the two vertical side walls to isolate the draft gear pocket from the draft sill side walls. The liner is adapted to fit in the draft gear pocket by a liner length smaller than the pocket length of the pocket.
In another aspect of the present invention, the liner is adapted for use in a train car coupling assembly using an E-Type coupler wherein the liner is disposed in the draft gear pocket of a draft sill along the inside of the side walls of the draft sill. The liner extends from adjacent the front stop in the draft gear pocket to a position adjacent the rear stop in the draft gear pocket to isolate the draft gear from the draft sill side wall between the front and rear draft gear stops. The liner also extends from the top of the draft sill to a position adjacent the bottom of the draft sill. A mounting flange on the bottom of the draft sill is adjacent the bottom of the liner wherein carrier plates mounted on the mounting flange of the side wall and extending transversely across the draft sill on each side wall to form a bottom of the draft gear pocket and hold the liner in the pocket. The draft gear comprising a portion in the draft gear pocket. The draft gear is connected to the coupler, wherein the liner is adapted to line the draft sill from the inboard to the outboard ends of the pocket.
In another aspect of the present invention, the liner is adapted for use in a train car coupling assembly using an F-Type coupler wherein the liner comprises a plurality of liner sheets disposed in the draft gear pocket of a draft sill adjacent to the inside of the each of the side walls of the draft sill. The draft gear is between the liner sheets. Each liner sheet extends from the bottom of the draft sill to a position adjacent the top of the draft sill. The liner sheets also extend from adjacent the front stop in the draft gear pocket to a position adjacent the rear stop in the draft gear pocket on each respective sidewall. A plurality of mounting flange portions extend from the sidewalls. The top of the sill is connected to a top edge of each of the two sidewalls to define an inverted U-shaped draft gear pocket. The top extends between the sidewalls to support the sidewalls in spaced relation to each other. A safety plate is mounted across the bottom of the draft sill at the plurality of mounting flange portions on the bottom edge of the two sidewalls. The safety plate is connected transverse to the draft gear pocket. A draft gear carrier plate is also connected inboard from the safety plate and mounted transversely to the draft sill and the mounting flange portions.
Various types of draft gear assemblies are in use today. In addition, new draft gear assembly designs are being proposed. Each sits in the draft gear pocket of the draft sill to absorb impact form the train actions and may also have a friction interference with the sidewalls. Each type of draft gear and coupler assembly must integrate with the draft sill to minimize damage to the draft sill and reduce maintenance.
Referring to
Referring to
Throughout this description, references are made to inboard, forward or front positions or directions, and to outboard, rear, back or rearward positions or directions. The terms outboard, forward and front should be understood to refer to the longitudinally outboard position or direction shown at 2 in
Continuing to refer to
Continuing to refer to
Referring to
Continuing to refer to
Continuing to refer to
Referring to
Referring to
Referring to
Referring to
Likewise, in
In use the liner 99 is used to isolate the components of the draft gear 10 namely the followers 26, 32 and the yoke 24 from the sill wall 15. Draft gear followers 26 rub against the steel, cast or fabricated, draft sill 20 causing wear and friction. Depending on the wear, the sidewall 15 must be repaired to insure safety of the system. The liner 99 and the draft gear 10 are more easily replaced than the draft sill 20. To prevent the wear on the draft sill 20, the liner is slipped in on both sides of the draft gear 10 to space the follower 26 from the sidewalls 15. The liner sheets 117, 118 are placed in the draft gear pocket 18 between the first stop 14 and the second stop 16. Fasteners are usually not required to hold the sheets 117, 118 in place. The carrier plates 52 are attached to the mounting flange to keep the sheets from falling out of the pocket 18. The carrier plates 52 are removably held in place by fasteners 122 extending through the plates and the flange 116. No modifications of the draft sill 20 is usually necessary for use with the liner 99 of the present invention.
The draft sill forms an inverted U-shaped channel having the top attached to the rail car. The sidewalls and the top bound the draft sill interior. The carrier plates removably attached to the mounting flange on the sidewalls closes the bottom. The channel may be an open rectangular shaped cavity for receiving the draft gear therein, and having the liner sheets between the draft gear and the sidewalls. The liner sheets 117, 118 are inserted into the draft sill and seated between the front and rear stop to line the draft gear pocket. The draft gear 10 is inserted between the sheets. The draft gear and liner is held in place by the carrier plates 52 fastened to the mounting flange on the sidewall. The liner sheets may wear and need replacement before the draft gear or draft sill need servicing. The carrier plates 52 may be removed to pull out the worn liner sheets. New liner sheets are inserted vertically next to each sidewall in the draft gear pocket. The sheets are placed adjacent to the draft gear and between the draft gear and the respective sidewall so the draft gear is between the liner sheets. The carrier plates 52 are reattached to hold the draft gear and liner sheets in the draft gear pocket.
When a draft load, that is, a load tending to pull the coupler in a longitudinally outboard direction, greater than about 25,000-30,000 pounds is experienced, the coupler 22 moves longitudinally outboard. The draft system should reach the full draft position when the coupler 22 receives a load of 650,000 pounds, nominally, in the illustrated embodiment. The coupler and the yoke 24 both move in response to a draft impact. The full draft stroke for the coupler and yoke 24 is ¼(1.25) inches, nominally. The draft sill liner may be used with standard cast or fabricated draft sills. In the full draft position, the coupler pulls against the coupler key 59 which pulls the yoke 24 forward a distance of about 1.25 nominal inches, compressing the front resilient member 28. Simultaneously, the back resilient member 30 expands by approximately 1.25 inches.
Although the invention has been described above in connection with particular embodiments and examples, it will be appreciated by those skilled in the art that the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1947936 | Glascodine | Feb 1934 | A |
4238039 | Cooper et al. | Dec 1980 | A |
4249664 | Murphy | Feb 1981 | A |
4264015 | Mathieu | Apr 1981 | A |
4591059 | Hammarlund | May 1986 | A |
5054630 | Altherr | Oct 1991 | A |
20080011700 | Brough et al. | Jan 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080011700 A1 | Jan 2008 | US |