The invention relates to a drag head for dredging purposes and to a trailing suction hopper dredger comprising such a head. The invention further relates to methods of dredging.
Dredging at sea or in open water may be carried out by dredging vessels, such as a trailing suction hopper dredger (TSHD). The dredging vessels comprise a suction tube one end of which can be lowered to the seabed and used to suck up solids such as sand, sludge or sediment, mixed with water. This lower end of the suction tube can be provided with a suction head. The solid material mixed with water is pumped through the suction tube into a hopper of the dredging vessel.
Once the hopper is full, the pumping may continue causing an overflow. The overflow will mainly be formed by water, as the solids tend to sink to the bottom of the hopper. The pumping may be stopped when it is no longer efficient to continue, as may be the case when the overflow is becoming too dense.
The higher the density of the mixture of solids and water that is pumped through the suction tube, the more efficient the dredging is performed. Dredging with relatively high densities has many advantages. In the first place, dredging can be performed in a more time and cost efficient way. Secondly, more solid material can be pumped into the hopper. Also, overflow losses will be reduced or will even disappear which is advantageous from an energetic point of view. Furthermore, reducing overflow losses will reduce turbidity.
One element of the dredging installation that may limit the maximum density is the trailing suction head provided at the lower end of the suction tube.
DE214643C discloses a suction tube and a trailing suction head. The suction tube has a bend near the trailing suction head such that the suction opening faces the direction of motion. In the suction opening an adjustable sled member is provided to control the dredging depth. Also, an adjustable plate member may be provided in the suction opening to control the amount of water entering the suction opening. A dragging force is applied directly to the suction head by the suction tube.
Other trailing suction heads are known which comprise a body which is arranged to be dragged along the seabed. The body comprises connection means for connecting to a suction tube which may also serve to impart the drag force on the body. A visor having a cutting edge is hingeably connected at a rear side of the body. The angle of orientation and/or the depth of the cutting edge of the visor can be adjusted with respect to the body by means of hydraulic piston/cylinder devices. Jet nozzles are provided in the body to facilitate the dredging process by breaking up the material of the sea bed and fluidizing it for removal via the suction tube. In order to lift the dredged material from the cutting edge towards the inlet to the suction tube, a significant amount of mixing with water is required leading to a reduction in density of the mixture. At present for sand and silt dredging, mixture densities of on average 1350 kg/m3 are achievable. A drag head of this type is known from EP1653009A1. Similar drag heads are known from EP1108819A1 and AU2005200784A1, the contents of each of which are herein incorporated by reference in their entirety.
It would be desirable to provide an alternative to the above discussed drag heads, in particular one which is capable of sucking up mixtures of water and material with a relatively high density in a relatively efficient way whereby excess water transport is minimised.
According to the invention, there is provided a drag head for dredging material from a bed of a body of water and transporting the material to a suction tube, the drag head being arranged to be dragged over the bed in a dragging direction by a drag member, wherein the drag head comprises a heel section being connectable to the drag member and having a bed engaging surface arranged to follow the bed and a suction section comprising a suction opening; a suction chamber; and an outlet for connection to the suction tube such that an underpressure can be created in the suction chamber to suck up the material from the bed through the suction opening into the suction chamber, wherein the suction section is adjustably mounted to the heel section such that an orientation of the suction opening can be adjusted relative to the heel section. By providing the suction section separately adjustable from the heel section, the orientation of the suction opening can be set independently of the position of the heel which is being towed along the bottom of the seabed. Such an arrangement is believed to be considerably more versatile in optimizing the direction and/or height of the suction opening. Since the outlet also forms part of the suction section, its orientation may also be adjusted together with the suction opening. In the present context, reference to material is intended to refer to solid or semi solid material including silt, sand, sediment, mud, gravel and fractured rock as may generally be encountered during suction dredging operations. Furthermore, although reference may be made to sea bed, this is equally intended to cover and include beds of rivers, lakes, canals, estuaries and the like.
According to the invention the heel section is arranged to be connected to a drag member. The drag member may be a dragging pole, bar, pipe, cable, chain or the like or the suction tube itself, which is connected with the vessel to drag the drag head over the seabed. In the present context, reference to the fact that the heel section is connected to the drag member is understood to mean direct or indirect connection therewith. The dragging force is subsequently applied to the suction section via the heel section. Preferably, the suction section is not connected to the drag member except via the heel section.
The suction section may be adjustable in various ways using appropriate mechanical means as will be known to the skilled person. According to a preferred embodiment of the invention, the suction section is rotatable with respect to the heel section about an axis of rotation which is in use substantially horizontal and perpendicular to the dragging direction. Most preferably, this axis lies generally behind the heel section and ahead of the suction section with respect to the direction of movement of the drag head. Preferably too, the axis is positioned relatively low with respect to the bed engaging surface in order to maximize the mass of the suction section that acts downwards.
According to a further aspect of the invention, the suction section may comprise a lower edge, e.g. a cutting edge, forming a trailing edge of the suction opening, wherein the lower edge or cutting edge is in use lower than the bed engaging surface of the heel section in order to dig into the material forming the bed. The lower edge or cutting edge is preferably substantially horizontal and substantially perpendicular with respect to the dragging direction and points at least partially in the dragging direction. By providing the lower edge or cutting edge below the bed engaging surface of the heel section, the suction opening will be directed in the dragging direction. By rotating the suction section with respect to the heel section the relative depth of the lower edge or cutting edge with respect to the bed engaging surface of the heel section can be adjusted and thereby the depth of channel dredged by the drag head.
The cutting edge may comprise a row of cutting members, which may be formed as (replaceable) teeth being placed in corresponding teeth holders. In general, the width of the cutting edge transverse to the dragging direction may be any appropriate width according to the operation being performed. Nevertheless, in general, the width of the cutting edge will not be more than the width of the bed engaging surface of the heel section. In a most preferred embodiment, both of these sections may have similar widths. It will also be understood that although in general the heel section will lie ahead of the suction section in the direction of movement, this position is not necessarily essential. The heel section may in certain configurations be located to one or both sides or around the suction section.
According to one embodiment of the invention, the width of the suction section decreases from the suction opening towards the outlet, most preferably in a gradual way. This smooth transition assists the transport of the dredged material towards the outlet and helps avoid significant energy losses. Preferably, the suction chamber may have a tapered or trumpet like shape to provide a smooth transition between the relatively large suction opening and the smaller outlet towards the suction tube. The term width is used here to indicate the dimension substantially perpendicular to the dragging direction and, in use, substantially horizontal. As an additional or alternative measure, the suction section may have a bottom plate which is at least partially inclined in an upward direction from the lower edge or cutting edge towards the outlet. The bottom plate ensures a smooth flow path for the material that is sucked up, thereby reducing the resistance. The bottom plate may be straight or curved.
According to an embodiment the suction section may be connected to the suction tube via a flexible connection. Providing a flexible connection has the advantage that the suction section can be moved with respect to the heel section and the suction tube. The suction tube may be provided on and move with the heel section or may be independent therefrom. The flexible connection may be provided by a flexible reinforced tube or concertina section. Alternatively it may be achieved by telescoping sections of rigid pipe. Preferably, the flexible section is of low-loss design in order to further reduce flow resistance to the dredged mixture, whereby transport of higher mixture densities may be achieved. In a further alternative, the suction tube itself may be flexible.
In one embodiment, the suction opening is at least partially bounded by the heel section. In such a configuration, the suction section and heel section may engage together to form the suction chamber. The engagement between the two sections should be sufficiently tight that suction losses and water inflow from between the two sections may be minimal. In a particularly preferred embodiment, the heel section and the suction section comprise two half shells that engage or telescope together to form the suction chamber. The heel section provides the bed engaging surface while the suction section carries the lower edge or cutting edge and forms the suction outlet.
The drag head may be provided with means to form a desired mixture density of the dredged material, optimized to achieve transport to the surface with minimal liquid content. The skilled person will be aware of various manners in which this may be achieved using swirl vanes, cutting blades and the like. According to a preferred embodiment the drag head may comprise a plurality of conduits having outlet openings or nozzles for delivering water jets into the suction chamber at or near the outlet. These nozzles may preferably be located on the suction section and most preferably around the outlet. Such water jets may be provided to fluidize the material to make transport of the material easier.
According to a further embodiment, the drag head may be provided with means for breaking up or loosening the material of the sea bed at or ahead of the lower edge or cutting edge. In this case too, the choice of measure provided will depend on the particular material being dredged and the skilled person will be aware of the alternatives that may be used. In a preferred embodiment, a plurality of conduits having outlet openings for forming water jets beneath the bed engaging surface of the heel may be provided. Not only do such jets make it easier to remove the material from the bottom but they may also assist in fluidizing it to the desired degree for further transport.
According to an embodiment the outlet from the suction chamber is at least partially directed in a direction opposite to the dragging direction. By orientating the outlet from the suction section in this way, the material is initially sucked in a direction at least partially opposite to the dragging direction. This may assist in providing a natural and undisturbed flow path for the material, allowing for an energy efficient suction operation.
According to a still further aspect of the invention, the drag head may be provided with an actuator arrangement for displacing the suction section with respect to the heel section. This actuator may be a hydraulic, pneumatic or mechanical actuator and can be automatically operated to set a desired orientation or depth of the suction section or the cutting edge.
In an alternative arrangement, the desired orientation may be achieved without actuator by using the natural mass of the suction section. This may be weighted or biased with respect to the heel section to achieve the desired orientation. In one embodiment, the position of the hinge may be adjustable to achieve the desired weighting. In this manner the depth of the lower edge or cutting edge may be adjusted depending e.g. on the dragging speed, seabed consistency and other related factors.
According to a further aspect of the invention, the heel section may be provided with a pump to provide suction to the suction chamber via the suction tube. Preferably the pump is a high performance submerged dredge pump for operating with high mixture densities such as a centrifugal pump. The pump may be carried directly on the heel section and may carry the suction tube. Alternatively, the pump and/or the suction tube may be provided at a remote position or may be mounted to the drag member.
Preferably the pump is located at a suitable distance above the seabed to avoid damage and for most purposes will be located at about half the water depth in order to most efficiently assist in transport of the mixture.
The invention also relates to a vessel, such as a trailing suction hopper dredger, comprising a drag head as generally described above. In its working configuration, the heel section is attached to a drag member trailing from the vessel whereby the drag head may be dragged or towed along the seabed.
The invention further relates to a method of suction dredging a mixture of solids and water from the bed of a body of water using a drag head comprising a heel section and a suction section, the method comprising dragging the heel section across the bed in a first direction, positioning the suction section at a desired depth and angle with respect to the heel section such that the suction section at least partially engages and enters the bed, applying suction to the suction section to cause the bed material to be sucked up in a direction at least partially opposed to the first direction and be mixed with water and transporting the mixture to the surface.
Most preferably, the method is carried out for a mixture comprising sand and water having a density of more than 1650 kg/m3. As a result of the desirable drag head configuration, such densities may be efficiently dredged.
Embodiments will now be described, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, and in which:
The figures are meant for illustrative purposes only, and shall not serve as restriction of the scope or the protection as laid down by the claims.
With reference to the figures, embodiments will now be described in more detail. According to
Drag head 1 comprises a heel section 11 in the form of a sled and a suction section 10 having the form of a bucket, articulated together at a generally horizontal hinge 8. The heel section 11 is attached to a cable 16 via a pair of mounts 18 of which only one is shown. The cable 16 extends to the vessel 4 where it is held fast by a suitable derrick or boom 19 as is conventional in the art.
The heel section 11 has a bed engaging surface 22 on its underside. The bed engaging surface 22 is sufficiently long to ensure that the heel section assumes a substantially stable towing position. On its upper surface, heel section 11 carries a suction pump 50 which has a pump outlet 52 connected to a transport tube 54 leading to the surface and into a hopper 5 onboard the vessel 4.
The suction section 10 has a suction chamber 12 within its interior with a suction opening 13 at its lower side. A trailing edge or lower edge of the suction opening 13 forms a cutting edge 15. The cutting edge 15 may be provided with serrations (not shown). From the cutting edge 15 a bottom plate 17 leads up to an outlet 14 provided at an upper, rear side of the suction section 10. The outlet 14 connects the interior of the suction chamber 12 to a flexible suction tube 20. The suction tube 20 is connected to a pump inlet 51 on pump 50.
In use, the drag head 1 is dragged along the seabed 3 by the cable 16 in a direction of motion D. The heel section 11 follows the seabed 3 and the blades 24 on the bed engaging surface 22 cut into the sand 2 and loosen it. The suction section 10 pivots about the hinge 8 due to its mass and causes the cutting edge 15 to dig into the sea bed 3. The loosened sand 2 is scooped up by the cutting edge and rides up the bottom plate 17 towards the outlet 14. The pump 50 is operated to generate suction in the suction tube 20 causing water to also be sucked up through the suction opening 113. As the water and cut sand 2 approach the outlet 14, the narrowing of the suction chamber 13 causes their velocity to increase whereby the sand 2 becomes entrained with the water. The resulting mixture is pumped via the pump 50 and transport tube 54 to the surface and into the hopper 5. Due to the advantageous orientation of the suction opening 13 and the upward slope of the bottom plate 17 towards the outlet 14, the cut sand can be carried away with relatively little entrainment of water and a relatively high density of the mixture.
A second embodiment of a drag head 100 according to the invention is shown in
In the embodiment of
On an upper surface of the tubular body 140 there are provided a pair of actuators 130 (of which one is shown in this view) having piston arms 132 attached to an upper portion of the suction section 110 at a mount 134. By operating the actuators 130, the suction section 110 can be pivoted with respect to the heel section 111 to cause the cutting edge 115 to dig deeper into the sea bed.
As in the first embodiment, the suction section has a bottom plate 117 which leads upwards to an outlet 114 at an upper rear part of the suction section. Unlike the first embodiment, the outlet 114 is connected to a flexible connection 121 which in turn connects to the suction tube 120. In this case, the pump 150 is carried by the drag member 141 and has a pump inlet 151 connected to the suction tube 120 and a pump outlet 152 connected to transport tube 154.
In use, the drag head 100 is dragged along by the dredging vessel in the direction D with the heel section 111 engaging the seabed 3. Pressurised water is provided to the manifold 164 which causes the formation of jets of water from further nozzles 162 beneath the bed engaging surface 122. The jets of water loosen and partially break up the sand or silt 2. The loosened sand 2 is cut and lifted by cutting edge 115 and enters suction chamber 112 through suction opening 113. The reducing width of the suction chamber 112 and the bottom plate 117 funnel the sand 2 upwards towards the outlet 114. At this stage, the sand contains a quantity of entrained water due to the further nozzles 162. Nevertheless, the density is too high for it to be easily transported. As the sand and water mixture enters the outlet 114 additional water jets are injected through nozzles 160. These jets further loosen the sand 2 and fluidise it to a desired final density of around 1650 kg/m3 for transport via the pump 150 and transport tube 154 to the surface. Due to the increased density, the vessel 4 can be filled without overflow or further discharge back into the water which is highly advantageous for sensitive environments where such discharge during dredging is prohibited.
Thus, the invention has been described by reference to certain embodiments discussed above. It will be recognized that these embodiments are susceptible to various modifications and alternative forms well known to those of skill in the art. In particular, the arrangement of flexible connection of
Many modifications in addition to those described above may be made to the structures and techniques described herein without departing from the spirit and scope of the invention. Accordingly, although specific embodiments have been described, these are examples only and are not limiting upon the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2007072 | Jul 2011 | NL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NL2012/050474 | 7/4/2012 | WO | 00 | 3/14/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/009172 | 1/17/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4265035 | Goedvolk | May 1981 | A |
4628623 | Deal | Dec 1986 | A |
4957622 | Mims | Sep 1990 | A |
5546682 | Skerry | Aug 1996 | A |
5732487 | Van De Kerckhove | Mar 1998 | A |
8286375 | Tack | Oct 2012 | B2 |
Number | Date | Country |
---|---|---|
2005 200 784 | Sep 2005 | AU |
1766240 | May 2006 | CN |
214463 | Dec 1906 | DE |
0 722 084 | Jul 1996 | EP |
0 735 203 | Oct 1996 | EP |
1 108 819 | Jun 2001 | EP |
1 653 009 | May 2006 | EP |
1653009 | May 2006 | EP |
2 096 672 | Oct 1982 | GB |
1 573 101 | Jun 1990 | SU |
Entry |
---|
International Search Report, dated Sep. 14, 2012, from corresponding PCT application. |
Chinese Office Action, dated Mar. 30, 2015, in corresponding Chinese Patent Application No. 201280043985.5. |
Number | Date | Country | |
---|---|---|---|
20140190044 A1 | Jul 2014 | US |