The subject of this patent application relates generally to drain stoppers, and more particularly to a drain stopper apparatus configured for keeping the drainpipe substantially unobstructed when the apparatus is in an open position, thereby preventing any buildup of hair or other materials therewithin.
Applicant hereby incorporates herein by reference any and all patents and published patent applications cited or referred to in this application.
By way of background, as illustrated in the prior art diagram of
Aspects of the present invention fulfill these needs and provide further related advantages as described in the following summary.
It should be noted that the above background description includes information that may be useful in understanding aspects of the present invention. It is not an admission that any of the information provided herein is prior art or relevant to the presently claimed invention, or that any publication specifically or implicitly referenced is prior art.
Aspects of the present invention teach certain benefits in construction and use which give rise to the exemplary advantages described below.
The present invention solves the problems described above by providing a drain stopper apparatus configured for being installed within a drain hole of a fixture, the drain hole in fluid communication with a drainpipe. In at least one embodiment, the apparatus provides a stopper body sized and shaped for being positioned within the drain hole of the fixture, in contact with an inner surface of a basin of the fixture. A stopper tailpiece is engaged with a bottom of the stopper body. A stopper is positioned within the stopper body and configured for selectively moving between one of an open position—wherein fluid is able to freely flow down through each of the stopper body, stopper tailpiece and drainpipe—and a closed position—wherein fluid is prevented from flowing down through the stopper body. A drive coupler interconnects a lower end of the stopper tailpiece with an upper end of the drainpipe, the drive coupler providing a drive mechanism positioned and configured for selectively actuating the stopper between the open and closed positions. The drive mechanism provides a pivot rod pivotally mounted proximally to an outer surface of the drive coupler at a pivot point. A pair of cables extend between the pivot rod and the stopper within an enclosed cable passage positioned within the stopper tailpiece, with a first end of each cable attached to the pivot rod so as to flank the pivot point, and an opposing second end of each cable attached to the stopper, wherein as the pivot rod pivots back and forth about the pivot point, the cables move in a pull/follow fashion which, in turn, cause the stopper to move between the open position and closed position. As a result, the stopper body, stopper tailpiece, drive coupler and drainpipe remain substantially unobstructed when the stopper is in the open position, thereby preventing any buildup of hair or other materials therewithin as fluid flows therethrough.
In at least one alternate embodiment, the apparatus provides a stopper body sized and shaped for being positioned within the drain hole of the fixture, in contact with an inner surface of a basin of the fixture. A stopper tailpiece is engaged with a bottom of the stopper body. A drive coupler interconnects a lower end of the stopper tailpiece with an upper end of the drainpipe. A stopper of the apparatus provides an inner pipe coaxially and slidably positioned within the stopper body and stopper tailpiece, the inner pipe sized and configured for selectively allowing fluid to freely flow down through each of the inner pipe, drive coupler and drainpipe. The inner pipe has an outer diameter that approximates an inner diameter of the stopper tailpiece, with a lower end of the inner pipe extending a distance beyond a lower end of the stopper tailpiece. A cap is positioned on an upper end of the inner pipe. An at least one aperture is positioned on a sidewall of the inner pipe, below the cap. The drive coupler provides a drive mechanism mechanically linked to an outer surface of the inner pipe at a point below the lower end of the stopper tailpiece. The drive mechanism provides a pivot rod pivotally mounted proximally to an outer surface of the drive coupler at a pivot point. Thus, as the pivot rod pivots back and forth about the pivot point, the drive mechanism is configured for selectively moving the stopper vertically relative to the stopper body between one of a closed position—wherein the cap creates a fluid-tight seal with the stopper body—and an open position—wherein the cap is elevated a distance above a top surface of the stopper body, thereby exposing the at least one aperture in the sidewall of the inner pipe, allowing fluid to freely flow therethrough, into the inner pipe and down into the drainpipe, with the stopper body, stopper tailpiece, drive coupler, inner pipe and drainpipe remaining substantially unobstructed when the stopper is in the open position, thereby preventing any buildup of hair or other materials therewithin as fluid flows therethrough.
In at least one further alternate embodiment, the apparatus provides a stopper body sized and shaped for being positioned within the drain hole of the fixture, in contact with an inner surface of a basin of the fixture. A stopper tailpiece is engaged with a bottom of the stopper body and extending a distance into the drain hole, the stopper tailpiece having an outer diameter that is relatively smaller than an inner diameter of the drain hole. A stopper is positioned within the stopper body and configured for selectively moving between one of an open position—wherein fluid is able to freely flow down through each of the stopper body, stopper tailpiece and drainpipe—and a closed position—wherein fluid is prevented from flowing down through the stopper body. An electric motor is positioned within the stopper body and mechanically linked to the stopper for selectively moving the stopper between the open position and closed position. As a result, the stopper body, stopper tailpiece and drainpipe remain substantially unobstructed when the stopper is in the open position, thereby preventing any buildup of hair or other materials therewithin as fluid flows therethrough.
Other features and advantages of aspects of the present invention will become apparent from the following more detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of aspects of the invention.
The accompanying drawings illustrate aspects of the present invention. In such drawings:
The above described drawing figures illustrate aspects of the invention in at least one of its exemplary embodiments, which are further defined in detail in the following description. Features, elements, and aspects of the invention that are referenced by the same numerals in different figures represent the same, equivalent, or similar features, elements, or aspects, in accordance with one or more embodiments.
Turning now to
With continued reference to
In at least one embodiment, the apparatus 20 further provides a drive coupler 40 attached to a lower end 42 of the stopper tailpiece 28 and configured for interconnecting the apparatus 20 with the drainpipe 38. In at least one embodiment, depending on the respective lengths of the stopper tailpiece 28 and the drive coupler 40 as compared to the dimensions of the space in which the fixture 24 is positioned, the drive coupler 40 may alternatively interconnect the apparatus 20 with a trap 44 of the fixture 24. Accordingly, for simplicity purposes, the term “drainpipe” as used herein is intended to include both the drainpipe 38 as well as the trap 44. In at least one embodiment, the drive coupler 40 is integral with the stopper tailpiece 28—or alternatively, the drive coupler 40 and stopper tailpiece 28 may be one and the same. In at least one alternate embodiment, an upper end 46 of the drive coupler 40 is removably engagable with the lower end 42 of the stopper tailpiece 28, using a threadable or frictional engagement for example—though removable engagement between the drive coupler 40 and stopper tailpiece 28 may be achieved using any other mechanism or material, now known or later developed, in further embodiments. In at least one embodiment, the drive coupler 40 is further configured for housing or otherwise supporting a drive mechanism 48 positioned and configured for selectively actuating the stopper 36 and moving it between the open and closed positions, as discussed further below.
In at least one embodiment, as illustrated in
As noted above, the drive coupler 40 is configured for housing or otherwise supporting a drive mechanism 48 positioned and configured for selectively actuating the stopper 36 and moving it between the open and closed positions. In at least one embodiment, as illustrated in
In at least one embodiment, the pivot rod 62 is pivotally mounted to an outer surface 68 of the drive coupler 40 at a pivot point 70. Additionally, in at least one embodiment, a pair of cables 72 are attached at a first end 74 to the pivot rod 62 so as to flank the pivot point 70, while an opposing second end 76 of each cable 72 is attached to the stopper 36. Thus, as the pivot rod 62 pivots back and forth about the pivot point 70, the cables 72 move in a pull/follow fashion which, in turn, cause the stopper 36 to move between the open and closed positions, as discussed further below. In at least one embodiment, as illustrated in
In at least one embodiment, as illustrated in
In at least one alternate embodiment, as illustrated in exploded view of
In at least one further alternate embodiment, as illustrated in
In at least one still further alternate embodiment, as illustrated in
In at least one still further alternate embodiment (not shown), the inner pipe 110 is combined with a stopper 36 similar to that described above and depicted in
In at least one still further alternate embodiment (not shown), the inner pipe 110 is combined with a stopper 36 similar to that described above and depicted in
In at least one still further alternate embodiment, as illustrated in
In at least one still further alternate embodiment (not shown), the motor 118 is combined with a stopper 36 similar to that described above and depicted in
In at least one still further alternate embodiment (not shown), the motor 118 is combined with a stopper 36 similar to that described above and depicted in
In at least one still further alternate embodiment, as illustrated in
In at least one still further alternate embodiment, as illustrated in
In at least one still further alternate embodiment, as illustrated in
In still further embodiments, any other mechanisms, now known or later developed, capable of selectively actuating the stopper 36 and moving it between the open and closed positions, may be substituted.
Aspects of the present specification may also be described as the following embodiments:
1. A drain stopper apparatus for being installed within a drain hole of a fixture, the drain hole in fluid communication with a drainpipe, the apparatus comprising: a stopper body sized and shaped for being positioned within the drain hole of the fixture, in contact with an inner surface of a basin of the fixture; a stopper tailpiece engaged with a bottom of the stopper body; a stopper positioned within the stopper body and configured for selectively moving between one of an open position—wherein fluid is able to freely flow down through each of the stopper body, stopper tailpiece and drainpipe—and a closed position—wherein fluid is prevented from flowing down through the stopper body; a drive coupler interconnecting a lower end of the stopper tailpiece with an upper end of the drainpipe, the drive coupler providing a drive mechanism positioned and configured for selectively actuating the stopper between the open and closed positions; the drive mechanism providing a pivot rod pivotally mounted proximally to an outer surface of the drive coupler at a pivot point; and a pair of cables extending between the pivot rod and the stopper within an enclosed cable passage positioned within the stopper tailpiece, a first end of each cable attached to the pivot rod so as to flank the pivot point, and an opposing second end of each cable attached to the stopper, wherein as the pivot rod pivots back and forth about the pivot point, the cables move in a pull/follow fashion which, in turn, cause the stopper to move between the open position and closed position; whereby, the stopper body, stopper tailpiece, drive coupler and drainpipe remain substantially unobstructed when the stopper is in the open position, thereby preventing any buildup of hair or other materials therewithin as fluid flows therethrough.
2. The drain stopper apparatus according to embodiment 1, wherein the bottom of the stopper body is removably engagable with the stopper tailpiece.
3. The drain stopper apparatus according to embodiments 1-2, wherein an upper end of the drive coupler is removably engagable with the lower end of the stopper tailpiece.
4. The drain stopper apparatus according to embodiments 1-3, wherein the pivot rod is attached distally to a pull rod accessible from a top surface of the fixture, thereby allowing the pull rod to be manually pulled and pushed which, in turn, pivots the pivot rod relative to the drive coupler.
5. The drain stopper apparatus according to embodiments 1-4, wherein the first end of each cable extends through a sidewall of the drive coupler to attach to the pivot rod.
6. The drain stopper apparatus according to embodiments 1-5, wherein the cable passage is positioned within a sidewall of the stopper tailpiece.
7. The drain stopper apparatus according to embodiments 1-6, wherein the cable passage is a small diameter tube that runs along an inner surface of the stopper tailpiece.
8. The drain stopper apparatus according to embodiments 1-7, wherein the stopper is a mechanical iris comprising a plurality of radially arranged rotatable flaps, whereby when the stopper is in the closed position, the flaps are rotated inwardly and cooperate to form a fluid-tight seal, thereby preventing fluid from flowing down through the stopper body, and when the stopper is in the open position, the flaps are rotated outwardly, thereby allowing fluid to freely flow down through each of the stopper body, stopper tailpiece and drainpipe.
9. The drain stopper apparatus according to embodiments 1-8, wherein the stopper further comprises: a stationary central gear surrounded by a selectively rotatable satellite ring; and a plurality of satellite gears radially arranged on the satellite ring, each satellite gear engaged with the central gear and providing one of the flaps thereon; wherein the second end of each cable is attached to the satellite ring for selectively rotating the satellite ring clockwise and counterclockwise about the stationary central gear, which rotates the satellite gears and, in turn, the flaps between the open position and the closed position.
10. The drain stopper apparatus according to embodiments 1-9, wherein the satellite ring rides on a low-friction disk in order to ease rotation of the satellite ring about the central gear.
11. The drain stopper apparatus according to embodiments 1-10, wherein: the flaps are rotatably mounted within the stopper body so as to selectively rotate in place; each flap provides a perpendicularly extending flap post; the stopper further provides a control ring that is selectively rotatable relative to the stopper body, the control ring providing a plurality of elongate slots, with each slot positioned and configured for slidably receiving a flap post of one of the flaps; and the second end of each cable is attached to the control ring for selectively rotating the control ring clockwise and counterclockwise about the stopper body, such that the slots cause the flaps to rotate between the open position and the closed position.
12. The drain stopper apparatus according to embodiments 1-11, wherein: the stopper comprises a first disk fixedly mounted within the stopper body, along with a second disk rotatably engaged with the first disk; and the first disk provides an at least one first aperture and the second disk provides a corresponding at least one second aperture; wherein the second end of each cable is attached to the second disk for selectively rotating the second disk clockwise and counterclockwise relative to the first disk which, in turn, rotates the stopper between the open position—wherein the first and second apertures are aligned so as to allow fluid to freely flow therethrough—and the closed position—wherein the at least one second aperture is no longer aligned with the corresponding at least one first aperture, thereby forming a fluid-tight seal between the first and second disks.
13. The drain stopper apparatus according to embodiments 1-12, wherein the stopper provides an inner pipe coaxially positioned within the stopper body and stopper tailpiece, the inner pipe sized and configured for allowing fluid to freely flow down through each of the inner pipe and drainpipe when the stopper is in the open position.
14. The drain stopper apparatus according to embodiments 1-13, wherein the inner pipe has an outer diameter that approximates an inner diameter of the stopper tailpiece.
15. The drain stopper apparatus according to embodiments 1-14, wherein: a lower end of the inner pipe extends a distance beyond a lower end of the stopper tailpiece; and the drive mechanism is mechanically linked to an outer surface of the inner pipe.
16. The drain stopper apparatus according to embodiments 1-15, wherein the second end of each cable is attached to the outer surface of the inner pipe at a point below the lower end of the stopper tailpiece for selectively rotating the inner pipe clockwise and counterclockwise relative to the stopper body as the pivot rod pivots back and forth about the pivot point, thereby moving the stopper between the open position and closed position.
17. The drain stopper apparatus according to embodiments 1-16, wherein the stopper is a mechanical iris comprising: a central gear mounted on an upper end of the inner pipe so as to rotate with the inner pipe; and a plurality of satellite gears radially arranged about the central gear and rotatably mounted within the stopper body so as to selectively rotate in place, each satellite gear engaged with the central gear and providing a flap thereon, whereby when the stopper is in the closed position, the flaps are rotated inwardly and cooperate to form a fluid-tight seal, thereby preventing fluid from flowing down through the inner pipe, and when the stopper is in the open position, the flaps are rotated outwardly, thereby allowing fluid to freely flow down through each of the inner pipe and drainpipe.
18. The drain stopper apparatus according to embodiments 1-17, wherein the stopper is a mechanical iris comprising: a plurality of radially arranged rotatable flaps mounted within the stopper body so as to selectively rotate in place, whereby when the stopper is in the closed position, the flaps are rotated inwardly and cooperate to form a fluid-tight seal, thereby preventing fluid from flowing down through the inner pipe, and when the stopper is in the open position, the flaps are rotated outwardly, thereby allowing fluid to freely flow down through each of the inner pipe and drainpipe; each flap providing a perpendicularly extending flap post; a control ring mounted on an upper end of the inner pipe so as to rotate with the inner pipe, the control ring providing a plurality of elongate slots, with each slot positioned and configured for slidably receiving a flap post of one of the flaps so as to cause the flaps to rotate between the open position and the closed position as the control ring is rotated.
19. The drain stopper apparatus according to embodiments 1-18, wherein: the stopper comprises a first disk fixedly mounted within the stopper body, along with a second disk mounted on an upper end of the inner pipe so as to rotate with the inner pipe; and the first disk provides an at least one first aperture and the second disk provides a corresponding at least one second aperture; whereby, the inner pipe rotates the second disk clockwise and counterclockwise relative to the first disk which, in turn, rotates the stopper between the open position—wherein the first and second apertures are aligned so as to allow fluid to freely flow therethrough—and the closed position—wherein the at least one second aperture is no longer aligned with the corresponding at least one first aperture, thereby forming a fluid-tight seal between the first and second disks.
20. A drain stopper apparatus for being installed within a drain hole of a fixture, the drain hole in fluid communication with a drainpipe, the apparatus comprising: a stopper body sized and shaped for being positioned within the drain hole of the fixture, in contact with an inner surface of a basin of the fixture; a stopper tailpiece engaged with a bottom of the stopper body; a drive coupler interconnecting a lower end of the stopper tailpiece with an upper end of the drainpipe; a stopper comprising: an inner pipe coaxially and slidably positioned within the stopper body and stopper tailpiece, the inner pipe sized and configured for selectively allowing fluid to freely flow down through each of the inner pipe, drive coupler and drainpipe; the inner pipe having an outer diameter that approximates an inner diameter of the stopper tailpiece, with a lower end of the inner pipe extending a distance beyond a lower end of the stopper tailpiece; a cap positioned on an upper end of the inner pipe; and an at least one aperture positioned on a sidewall of the inner pipe, below the cap; and the drive coupler providing a drive mechanism mechanically linked to an outer surface of the inner pipe at a point below the lower end of the stopper tailpiece; the drive mechanism providing a pivot rod pivotally mounted proximally to an outer surface of the drive coupler at a pivot point; whereby, as the pivot rod pivots back and forth about the pivot point, the drive mechanism is configured for selectively moving the stopper vertically relative to the stopper body between one of a closed position—wherein the cap creates a fluid-tight seal with the stopper body—and an open position—wherein the cap is elevated a distance above a top surface of the stopper body, thereby exposing the at least one aperture in the sidewall of the inner pipe, allowing fluid to freely flow therethrough, into the inner pipe and down into the drainpipe, with the stopper body, stopper tailpiece, drive coupler, inner pipe and drainpipe remaining substantially unobstructed when the stopper is in the open position, thereby preventing any buildup of hair or other materials therewithin as fluid flows therethrough.
21. The drain stopper apparatus according to embodiment 20, wherein the bottom of the stopper body is removably engagable with the stopper tailpiece.
22. The drain stopper apparatus according to embodiments 20-21, wherein an upper end of the drive coupler is removably engagable with the lower end of the stopper tailpiece.
23. The drain stopper apparatus according to embodiments 20-22, wherein the pivot rod is attached distally to a pull rod accessible from a top surface of the fixture, thereby allowing the pull rod to be manually pulled and pushed which, in turn, pivots the pivot rod relative to the drive coupler.
24. The drain stopper apparatus according to embodiments 20-23, further comprising a spring engaged between the stopper and the drive coupler for urging the stopper into the open position.
25. The drain stopper apparatus according to embodiments 20-24, wherein the pivot rod is further pivotally mounted to the outer surface of the inner pipe at a point below the lower end of the stopper tailpiece.
26. The drain stopper apparatus according to embodiments 20-25, further comprising: a cylindrical cam positioned within the drive coupler, with an upper half of the cam being rigidly positioned within the drive coupler, and a corresponding lower half of the cam being rigidly secured to the lower end of the inner pipe; a pair of cables, a first end of each cable attached to the pivot rod so as to flank the pivot point, and an opposing second end of each cable extending through a sidewall of the drive coupler and attached to the lower half of the cam, wherein as the pivot rod pivots back and forth about the pivot point, the cables move in a pull/follow fashion which, in turn, rotates the lower half of the cam clockwise and counterclockwise relative to the upper half of the cam; and a spring engaged between the stopper and the drive coupler for urging the stopper into the open position; whereby, when the lower half of the cam is rotated out of a corresponding notch provided by the upper half of the cam, the stopper is pulled down into the closed position, and when the lower half is rotated back into the notch, the stopper is urged back into the open position.
27. A drain stopper apparatus for being installed within a drain hole of a fixture, the drain hole in fluid communication with a drainpipe, the apparatus comprising: a stopper body sized and shaped for being positioned within the drain hole of the fixture, in contact with an inner surface of a basin of the fixture; a stopper tailpiece engaged with a bottom of the stopper body and extending a distance into the drain hole, the stopper tailpiece having an outer diameter that is relatively smaller than an inner diameter of the drain hole; a stopper positioned within the stopper body and configured for selectively moving between one of an open position—wherein fluid is able to freely flow down through each of the stopper body, stopper tailpiece and drainpipe—and a closed position—wherein fluid is prevented from flowing down through the stopper body; and an electric motor positioned within the stopper body and mechanically linked to the stopper for selectively moving the stopper between the open position and closed position; whereby, the stopper body, stopper tailpiece and drainpipe remain substantially unobstructed when the stopper is in the open position, thereby preventing any buildup of hair or other materials therewithin as fluid flows therethrough.
28. The drain stopper apparatus according to embodiment 27, wherein an outer surface of the stopper tailpiece provides a gasket for creating a friction fit within the drain hole.
29. The drain stopper apparatus according to embodiments 27-28, wherein the motor is powered by at least one of a battery, an AC power supply, and a DC power supply.
30. The drain stopper apparatus according to embodiments 27-29, wherein the motor is configured for being selectively triggered locally.
31. The drain stopper apparatus according to embodiments 27-30, wherein the motor is configured for being selectively triggered remotely.
32. The drain stopper apparatus according to embodiments 27-31, wherein the stopper is a mechanical iris comprising: a central gear rotatably mounted within the stopper body and mechanically linked to the motor for selectively rotating the central gear clockwise and counterclockwise relative to the stopper body; and a plurality of satellite gears radially arranged about the central gear and rotatably mounted within the stopper body so as to selectively rotate in place, each satellite gear engaged with the central gear and providing a flap thereon, whereby when the stopper is in the closed position, the flaps are rotated inwardly and cooperate to form a fluid-tight seal, thereby preventing fluid from flowing down through the stopper body, and when the stopper is in the open position, the flaps are rotated outwardly, thereby allowing fluid to freely flow down through each of the stopper body, stopper tailpiece and drainpipe.
33. The drain stopper apparatus according to embodiments 27-32, wherein the stopper is a mechanical iris comprising: a plurality of radially arranged rotatable flaps mounted within the stopper body so as to selectively rotate in place, whereby when the stopper is in the closed position, the flaps are rotated inwardly and cooperate to form a fluid-tight seal, thereby preventing fluid from flowing down through the inner pipe, and when the stopper is in the open position, the flaps are rotated outwardly, thereby allowing fluid to freely flow down through each of the inner pipe and drainpipe; each flap providing a perpendicularly extending flap post; and a control ring rotatably mounted within the stopper body and mechanically linked to the motor for selectively rotating the control ring clockwise and counterclockwise relative to the stopper body, the control ring providing a plurality of elongate slots, with each slot positioned and configured for slidably receiving a flap post of one of the flaps so as to cause the flaps to rotate between the open position and the closed position as the control ring is rotated.
34. The drain stopper apparatus according to embodiments 27-33, wherein: the stopper comprises a first disk fixedly mounted within the stopper body, along with a second disk rotatably engaged with the first disk; the second disk is mechanically linked to the motor; and the first disk provides an at least one first aperture and the second disk provides a corresponding at least one second aperture; whereby, the motor causes the second disk to rotate clockwise and counterclockwise relative to the first disk which, in turn, rotates the stopper between the open position—wherein the first and second apertures are aligned so as to allow fluid to freely flow therethrough—and the closed position—wherein the at least one second aperture is no longer aligned with the corresponding at least one first aperture, thereby forming a fluid-tight seal between the first and second disks.
35. The drain stopper apparatus according to embodiments 27-34, wherein the stopper comprises: an inner pipe coaxially and slidably positioned within the stopper body and stopper tailpiece, the inner pipe sized and configured for selectively allowing fluid to freely flow down through each of the inner pipe and drainpipe; the inner pipe having an outer diameter that approximates an inner diameter of the stopper tailpiece; a cap positioned on an upper end of the inner pipe; an at least one aperture positioned on a sidewall of the inner pipe, below the cap; and the inner pipe mechanically linked to the motor for moving the stopper vertically relative to the stopper body between one of a closed position—wherein the cap creates a fluid-tight seal with the stopper body—and an open position—wherein the cap is elevated a distance above a top surface of the stopper body, thereby exposing the at least one aperture in the sidewall of the inner pipe, allowing fluid to freely flow therethrough, into the inner pipe and down into the drainpipe.
36. The drain stopper apparatus according to embodiments 27-35, wherein the inner pipe is mechanically linked to the motor via a rack and pinion.
In closing, regarding the exemplary embodiments of the present invention as shown and described herein, it will be appreciated that a drain stopper apparatus is disclosed and configured for keeping the drainpipe substantially unobstructed when the apparatus is in an open position, thereby preventing any buildup of hair or other materials therewithin. Because the principles of the invention may be practiced in a number of configurations beyond those shown and described, it is to be understood that the invention is not in any way limited by the exemplary embodiments, but is generally directed to a drain stopper apparatus and is able to take numerous forms to do so without departing from the spirit and scope of the invention. It will also be appreciated by those skilled in the art that the present invention is not limited to the particular geometries and materials of construction disclosed, but may instead entail other functionally comparable structures or materials, now known or later developed, without departing from the spirit and scope of the invention.
Certain embodiments of the present invention are described herein, including the best mode known to the inventor(s) for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor(s) expect skilled artisans to employ such variations as appropriate, and the inventor(s) intend for the present invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described embodiments in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
Groupings of alternative embodiments, elements, or steps of the present invention are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other group members disclosed herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
Unless otherwise indicated, all numbers expressing a characteristic, item, quantity, parameter, property, term, and so forth used in the present specification and claims are to be understood as being modified in all instances by the term “about.” As used herein, the term “about” means that the characteristic, item, quantity, parameter, property, or term so qualified encompasses a range of plus or minus ten percent above and below the value of the stated characteristic, item, quantity, parameter, property, or term.
Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical indication should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and values setting forth the broad scope of the invention are approximations, the numerical ranges and values set forth in the specific examples are reported as precisely as possible. Any numerical range or value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Recitation of numerical ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate numerical value falling within the range. Unless otherwise indicated herein, each individual value of a numerical range is incorporated into the present specification as if it were individually recited herein. Similarly, as used herein, unless indicated to the contrary, the term “substantially” is a term of degree intended to indicate an approximation of the characteristic, item, quantity, parameter, property, or term so qualified, encompassing a range that can be understood and construed by those of ordinary skill in the art.
Use of the terms “may” or “can” in reference to an embodiment or aspect of an embodiment also carries with it the alternative meaning of “may not” or “cannot.” As such, if the present specification discloses that an embodiment or an aspect of an embodiment may be or can be included as part of the inventive subject matter, then the negative limitation or exclusionary proviso is also explicitly meant, meaning that an embodiment or an aspect of an embodiment may not be or cannot be included as part of the inventive subject matter. In a similar manner, use of the term “optionally” in reference to an embodiment or aspect of an embodiment means that such embodiment or aspect of the embodiment may be included as part of the inventive subject matter or may not be included as part of the inventive subject matter. Whether such a negative limitation or exclusionary proviso applies will be based on whether the negative limitation or exclusionary proviso is recited in the claimed subject matter.
The terms “a,” “an,” “the” and similar references used in the context of describing the present invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Further, ordinal indicators—such as “first,” “second,” “third,” etc.—for identified elements are used to distinguish between the elements, and do not indicate or imply a required or limited number of such elements, and do not indicate a particular position or order of such elements unless otherwise specifically stated. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the present invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the present specification should be construed as indicating any non-claimed element essential to the practice of the invention.
When used in the claims, whether as filed or added per amendment, the open-ended transitional term “comprising” (along with equivalent open-ended transitional phrases thereof such as “including,” “containing” and “having”) encompasses all the expressly recited elements, limitations, steps and/or features alone or in combination with un-recited subject matter; the named elements, limitations and/or features are essential, but other unnamed elements, limitations and/or features may be added and still form a construct within the scope of the claim. Specific embodiments disclosed herein may be further limited in the claims using the closed-ended transitional phrases “consisting of” or “consisting essentially of” in lieu of or as an amendment for “comprising.” When used in the claims, whether as filed or added per amendment, the closed-ended transitional phrase “consisting of” excludes any element, limitation, step, or feature not expressly recited in the claims.
The closed-ended transitional phrase “consisting essentially of” limits the scope of a claim to the expressly recited elements, limitations, steps and/or features and any other elements, limitations, steps and/or features that do not materially affect the basic and novel characteristic(s) of the claimed subject matter. Thus, the meaning of the open-ended transitional phrase “comprising” is being defined as encompassing all the specifically recited elements, limitations, steps and/or features as well as any optional, additional unspecified ones. The meaning of the closed-ended transitional phrase “consisting of” is being defined as only including those elements, limitations, steps and/or features specifically recited in the claim, whereas the meaning of the closed-ended transitional phrase “consisting essentially of” is being defined as only including those elements, limitations, steps and/or features specifically recited in the claim and those elements, limitations, steps and/or features that do not materially affect the basic and novel characteristic(s) of the claimed subject matter. Therefore, the open-ended transitional phrase “comprising” (along with equivalent open-ended transitional phrases thereof) includes within its meaning, as a limiting case, claimed subject matter specified by the closed-ended transitional phrases “consisting of” or “consisting essentially of.” As such, embodiments described herein or so claimed with the phrase “comprising” are expressly or inherently unambiguously described, enabled and supported herein for the phrases “consisting essentially of” and “consisting of.”
Any claims intended to be treated under 35 U.S.C. § 112(f) will begin with the words “means for,” but use of the term “for” in any other context is not intended to invoke treatment under 35 U.S.C. § 112(f). Accordingly, Applicant reserves the right to pursue additional claims after filing this application, in either this application or in a continuing application.
All patents, patent publications, and other publications referenced and identified in the present specification are individually and expressly incorporated herein by reference in their entirety for the purpose of describing and disclosing, for example, the compositions and methodologies described in such publications that might be used in connection with the present invention. These publications are provided solely for their disclosure prior to the filing date of the present application. Nothing in this regard should be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention or for any other reason. All statements as to the date or representation as to the contents of these documents is based on the information available to Applicant and does not constitute any admission as to the correctness of the dates or contents of these documents.
While aspects of the invention have been described with reference to at least one exemplary embodiment, it is to be clearly understood by those skilled in the art that the invention is not limited thereto. Rather, the scope of the invention is to be interpreted only in conjunction with the appended claims and it is made clear, here, that the inventor(s) believe that the claimed subject matter is the invention.
This is a divisional application and so claims the benefit pursuant to 35 U.S.C. § 120 of a prior filed and U.S. non-provisional patent application Ser. No. 17/086,654, filed on Nov. 2, 2020, which itself is a divisional of U.S. non-provisional patent application Ser. No. 16/852,688, filed on Apr. 20, 2020 (now U.S. Pat. No. 10,858,813, issued on Dec. 8, 2020). The contents of the aforementioned applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2179121 | Frank et al. | Nov 1939 | A |
3159179 | De Lain | Dec 1964 | A |
3787022 | Wilcox | Jan 1974 | A |
4596057 | Ohta | Jun 1986 | A |
5822812 | Worthington | Oct 1998 | A |
6375155 | Janssens | Apr 2002 | B1 |
8528122 | Ball et al. | Sep 2013 | B2 |
8925578 | Lee | Jan 2015 | B2 |
9243393 | Tidwell | Jan 2016 | B1 |
10876638 | Moens et al. | Dec 2020 | B2 |
20030041374 | Franke | Mar 2003 | A1 |
20070044231 | Ball | Mar 2007 | A1 |
20090158522 | Wu | Jun 2009 | A1 |
20090255041 | Duncan | Oct 2009 | A1 |
20100138985 | Duncan | Jun 2010 | A1 |
20100282995 | Cen | Nov 2010 | A1 |
20110099711 | Cerutti | May 2011 | A1 |
20110185494 | Beck | Aug 2011 | A1 |
20140059761 | Bohacik et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
1997035507 | Oct 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20220282465 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17086654 | Nov 2020 | US |
Child | 17825192 | US | |
Parent | 16852688 | Apr 2020 | US |
Child | 17086654 | US |