1. Field of the Invention
This invention relates generally to devices for filtering and separating fluids. More particularly, the present invention relates to fuel filters for removing foreign particles and separating water from the fuel supply of an internal combustion engine.
2. Description of the Related Art
Fuel filters commonly employ a disposable filter cartridge which is replaced at pre-established intervals of filter usage. There are a wide variety of fuel filter cartridge configurations and orientations. The replaceable cartridge is conventionally secured and/or locked to a base by a locking mechanism that is releasable to allow for removal of the cartridge for replacement purposes.
U.S. Pat. No. 5,017,285, which is assigned to the assignee of the present invention, discloses an inverted fuel filter assembly employing a base mounted to the vehicle and a disposable filter cartridge which is suspended directly below the base. The cartridge has a housing constructed of a pair of cup-like sections which are joined along a roll seam. The roll seam functions as a retaining shoulder for engagement by a collar that threads to the base to retain the cartridge in position. The disposable cartridge houses a single or dual stage filter element. The lower portion of the housing forms a sump that collects water separated from the fuel by the filter element. A central axial opening at the bottom of the cartridge housing receives a drain cock. The drain cock threads into an insert that is pressed into the interior lower end of the cartridge housing. Accumulated water is drained from the cartridge by opening the drain cock.
For certain applications, it is highly desirable that a drain bowl for the separated water be provided in conjunction with the fuel filter. The drain bowl functions to provide additional capacity for retaining the separated water. The drain bowl may be constructed of transparent materials that allow exterior inspection of the water level so that the water may be drained from the bowl before maximum capacity is reached, and the effectiveness of the water separating properties of the fuel filter may be monitored.
The conventional employment of a drain bowl in conjunction with a fuel filter cartridge has essentially involved integrating the somewhat bulky drain bowl structure with the filter assembly or the filter cartridge. Naturally, the implementation of an effective fluid seal and the provision of a mounting structure of a structural integrity sufficient to support the bowl are requisite to incorporating a drain bowl into the fuel assembly. In some applications, the filter cartridge is significantly modified so that it will directly accept or mount the drain bowl in a permanent fashion.
A problem associated with the use of drain bowls and the use of drain mechanisms for removing the separated water in general is providing a drain passage structure that will produce a sufficient rate of fluid or water flow. Because the filtering and separating functions of the fuel filter are conducted in a closed structure, in practice the draining of separated water from the cartridge housing tends to occur at a very low rate. The low drain rate can be attributed in part to the relatively small conventional drain openings, the surface tension of the separated water in the vicinity of the drain openings, and the unfavorable pressure differentials exerted on the separated water. In a number of applications that employ a drain bowl, the passage of separated water to the drain bowl is very inefficient and/or the draining of the separated water from the bowl or the cartridge is problematical.
In a conventional fashion, filter elements having a continuous fan-shaped pleated configuration are mounted inside the cartridge housing for filtering particulates and separating water from fuel circulated through the filter. A sump 62 is formed at the bottom of the lower section to collect water that coalesces from the fuel. A sump opening 65 is defined by a central axial protrusion 84 of the housing lower section 44.
Cooperative cover and bowl members mate to form a watertight drain bowl enclosure. The cover member has an upper surface with a concave contour that closely mirrors the exterior surface of the lower end of the cartridge 14. The cover member defines an axial recess to accommodate the axial protrusion 84 of the cartridge 14. A compressible seal ring 92 is disposed between opposed shoulders of the cover and bowl members. A second seal ring 98 seals the cover member in fluid tight relationship against the outer surface of the cartridge along a sealing interface surrounding the axial protrusion 84 of the cartridge housing. A third seal ring 101 fluidly seals the tapered recessed shoulder 103 of central bore passing through the bowl member to the mounting bolt 120. The bowl member and optionally the cover member of the drain bowl 16 may be formed of transparent materials, such as plastic, which allow for any water which is collected in the bowl to be readily visible for inspection from an exterior position. A lower off-center portion of the bowl member has a threaded opening for receiving a drain cock 99 to provide a valved drain passage so that collected water may be drained from the bowl as required. The drain cock 99 may have a conventional form and function such as the drain cock conventionally mounted to a filter cartridge for draining the cartridge sump 62.
With additional reference to
The mounting bolt 120 is inserted through the cover and bowl members to threadably engage the insert 100. The mounting bolt 120 is tightened to axially load the seal rings 98 and 101 to seal the bowl in fluid tight relationship with the cartridge 14. The apertures 114 defined by the insert 100 function as an aspirated opening to facilitate the efficient passage of water collected in the cartridge sump. In addition, the insert 100 can be employed for threadably receiving the drain cock 99 when the modular drain bowl is not desired. The filter assembly 10 is modular in that the drain bowl 16 may optionally be dismounted by unthreading the mounting bolt 120 from the insert 100 and remounting the drain cock 99 at the cartridge opening by threadably engaging the drain cock 99 into the insert 100. The insert 100 in the latter configuration functions to provide an aspirated opening for fluid passage through the drain cock 99.
The relatively thin sheet metal of the filter cartridge housing provides a relatively weak anchoring point for suspending a drain bowl 16 or other components below the filter cartridge 14. The drain bowl 16 should be attached to the cartridge with an axial force sufficient to compress seals 98 and 101, resist vibration induced loosening and withstand forces generated by impacts present in the vehicular environment where the filter assembly is employed.
The drain valve insert should provide both an aspirated drain and an anchoring interface of high integrity. The prior art discloses inserts such as those illustrated in
While the drain inserts 100, 200 have proven successful for their intended use, further improvements in manufacturing efficiency are possible while improving the integrity of the resulting anchoring interface.
An exemplary embodiment of the invention provides a drain valve insert in which a stamped sheet metal body supports a threaded nut in an elevated position over the drain opening. Multiple fluid flow passages are defined between the polygonal periphery of the nut and the generally cylindrical sheet metal body of the insert. The insert body defines ledges to support the nut at its corners and includes features configured to prevent rotation of the nut relative to the body of the insert. Retaining arms project upwardly from the body and are bent over the nut to axially retain the nut seated against the ledges. The nut efficiently provides a high-strength threaded surface for supporting a drain bowl and its associated hardware. The body of the insert and the nut are inexpensively formed in separate automated operations. Assembly of the nut into the insert body may also be automated. The assembled insert provides a low cost aspirated drain including a high strength threaded anchor.
An object of the invention is to provide a new and improved drain insert for a filter cartridge that includes an aspirated drain.
Another object of the invention is to provide a new and improved drain insert for a filter cartridge that efficiently provides a high strength threaded anchoring surface.
Other objects and advantages of the invention will become apparent from the specification and the accompanying drawings, in which:
The filter assembly 10 of
Square threaded nuts such as 70 are mass-produced and are commercially available at low cost. The nut 70 has a central opening 72 defined by a threaded surface 74. Since this central, threaded opening 72 will be occupied, the drain insert 300 defines a plurality of fluid flow passages 80 radially outwardly of the axial opening 72 in the nut. The nut 70 is secured to the insert body 20 to prevent axial and rotational movement relative to the body. The means by which rotational movement of the nut is prevented should be sufficiently robust to resist rotation of the nut during installation or removal of a drain cock or drain bowl. A square threaded nut is illustrated, however other nut shapes, such as hexagonal or non-polygonal shapes with anti rotation features are within the scope of the present invention.
With continuing reference to
The insert body 20 also includes two retaining arms 24 extending axially upwardly from opposite sides of the drain opening 30. The retaining arms 24 have an axial length that extends above the top surface of a nut 70 resting on the ledges 26 of the insert body 20 as shown in
An aspect of the present invention relates to formation of the retaining arms 24. As best seen in
As best seen in
While retainer arms are disclosed, other retaining means, such as welding, brazing, crimping, or a retaining ring seated in an internal groove might occur to those of skill in the art and are intended to be encompassed by the present invention. The ledge 26, shoulders 28 and retaining arm 24 configurations of insert bodies 20, 20a and 20b are representative examples and are not limiting of the disclosed invention. Many variations of the disclosed structures will occur to those of skill in the art without departing from the spirit and the scope of the present invention.
While illustrated embodiments of the present invention have been described for the purpose of illustration, the foregoing descriptions should not be deemed a limitation of the invention herein. Accordingly, various modifications, adaptations and alternatives may occur to one of skill in the art without departing from the spirit and the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
60545030 | Feb 2004 | US | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US05/05062 | 2/17/2005 | WO | 1/10/2006 |