1. Field of the Invention
This invention generally relates to medical devices and, more specifically, to drainage catheters adapted for use in draining a fluid from a body cavity.
2. Discussion of the Prior Art
Urinary drainage catheters are used to provide an outlet for the urinary bladder when the urethra is compromised or obstructed, such as when the patient is incapable of controlling the urinary system due to sedation or lack of mental capacity. A typical urinary catheter is the Foley catheter, which is a thick-walled rubber tube with an inflatable balloon near its distal end. The Foley catheter is inserted through the urethra and into the bladder cavity. When disposed, the balloon is inflated within the bladder cavity to a size that prevents the distal end from passing back through the bladder neck.
There are several disadvantages associated with the Foley catheter, the most significant of which is patient discomfort due to the construction of the catheter. The typical diameter of a Foley catheter is one-quarter inch or more. This size of catheter is difficult to insert and is very uncomfortable for the patient. Patient frustration sometimes leads to inadvisable patient removal of the catheter, even with the balloon inflated. This of course can be very damaging and traumatic to the patient. The hard rubber tip of the Foley catheter also contributes to patient discomfort. In particular, as the bladder empties, it collapses and the hard rubber tip begins to rub against the wall of the bladder causing irritation.
Thus, there is a need in the art for a drainage catheter that improves patient comfort during insertion and withdrawal of the catheter.
A drainage catheter having an elongate tube and a retention member disposed at the distal end of the elongate tube. The retention member is adapted for movement between a low-profile state facilitating insertion of the catheter and a high-profile state facilitating retention of the catheter in a body cavity. The retention member is oval or bulb shaped in the high-profile state and is cylindrical in the low-profile state. This construction of the catheter provides for less traumatic insertion and withdrawal of the catheter. A pusher or stylet is provided to facilitate insertion of the catheter. The retention member is preferably formed of a woven mesh that facilitates drainage of fluid into the elongate tube.
These and other features and advantages of the invention will be more apparent with a description of preferred embodiments and reference to the following drawings.
a-2f illustrate different configurations of a drainage catheter in accordance with an embodiment of the invention;
a-3d illustrate different embodiments of the invention for maintaining the position of a retention member in the bladder;
a-4c illustrate different embodiments of a pusher or stylet of the invention;
a-5c illustrate different embodiments of a snap-fit mechanism for deploying the retention member;
a-7d illustrate different embodiments of a mechanism of the invention for providing fast collapse of the retention member for easy catheter removal.
Co-pending U.S. patent application Ser. No. 09/598,014 filed Jun. 20, 2000, entitled Drainage Catheter, is incorporated herein by reference.
Referring to
Catheter 10 includes an elongate tube 24 having a wall 35 extending distally to a retention member 26. Tube 24 extends along an axis 37 between a proximal end 39 and a distal end 41. Retention member 26 can be formed of a mesh. With catheter 10 operatively positioned, urethra 18 is opened or otherwise augmented with a passage through tube 24 to drain urine from bladder 14. A drainage conduit 45 can be connected at the proximal end of tube 24 to gather urine in a collection bag 51.
a-2f illustrate different configurations of catheter 10 in greater detail. Catheter 10 further comprises a hub 22 at the proximal end of tube 24, a stop ledge 36 near a distal end of tube 24 and at least one hole 38 drilled along the distal end of tube 24 for draining fluid from bladder 14. Retention member 26 can be formed from filaments forming a mesh 28 as illustrated in
In particular, during placement of retention member 26 as illustrated in
In a preferred construction of retention member 26, filaments forming mesh 28 are woven and movable relative to each other. This characteristic enables retention member 26 to be stretched between the low-profile state and the high-profile state. When the filaments are made of polyester or some other heat-settable material, mesh 28 can be heat set in the high-profile state such that retention member 26 is biased to the high-profile configuration. When mesh 28 is stretched during placement of retention member 26, the filaments elongate providing retention member 26 with the low-profile configuration. That is, the filaments move to a more parallel relationship with axis 37 as retention member 26 is drawn to the low-profile state having a significantly reduced cross-section.
Another feature of the invention is it maintains the position of retention member 26 in bladder 14 even when tube 24 is bent and/or coiled. Referring to
Another feature of the invention is it provides a soft tip catheter allowing for less traumatic interface between the catheter and the ureteral cavity. In particular, tethered bushing 32 has a soft tip that provides for less traumatic interface between catheter 10 and urethra 18. In a preferred embodiment of the invention, soft tip tethered bushing 32 is molded onto a braided structure or mesh 28 of retention member 26. Alternatively, soft tip tethered bushing 32 can be molded and then attached to retention member 26 by adhesive or with a snap-fit mechanism. An advantage of soft tip tethered bushing 32 is it can resist puncturing and damaging of the ureteral wall during insertion. In particular, soft tip tethered bushing 32 can deflect during placement of catheter 10 and enables it to follow the path of least resistance rather than puncturing through an obstruction. Soft tip tethered bushing 32 can be made from CFlex, Kraton, silicone dispersion, Tecoflex, chronothane Flex or any foreseeable soft material that can be used inside a body cavity.
a-4c illustrate different embodiments of pusher or stylet 50 of the invention for providing ease of insertion and placement of a catheter in a bladder. To provide for ease of insertion and placement of catheter 10, tube 24 and retention member 26 need appropriate stiffness. However, patient comfort commands a soft and flexible construction of the catheter body and retention member. The present invention achieves these opposing requirements by providing a pusher or stylet 50 having proper column strength to facilitate insertion of a catheter having a soft and flexible body and retention member. Stylet 50 comprises a handle 52 and a body 54 having a tip 56. Handle 52 is inserted in catheter hub 22 so as to run along the center of tube 24 up to the catheter distal tip. Stylet 50 is preferably straight in order to keep retention member 26 inline with tube 24. Stylet 50 can be made from a plastic tube, a solid rod or a malleable material incorporated within a plastic body. Alternatively, a malleable stylet can be used without the plastic casement.
b illustrates a curved stylet 50b having a handle 52b and a curved body 54b. Depending on the needs of a procedure and/or a patient's anatomy, a physician can choose between a straight stylet and a curved stylet. Curved stylet 50b can be used to position retention member 26 through more tortuous paths. It is preferable that the stylet handle is operatively removable from the stylet body such that it can be used with either a straight body or a curved body stylet. Similarly, hub member 22 can be free to move along tube 24. Hub 22 can have an internal configuration that mates to an additional feature attached to tube 24. These features mate as a one-way snap-fit assembly. Curved stylet 50b can be made from a malleable material that allows a user to shape the stylet in any desired shape, or can be made from a malleable material incorporated within plastic.
Referring back to
a-5c illustrate different embodiments of a one-way snap-fit mechanism that allows a user to activate or deploy retention member 26 from outside a patient's body after placement of retention member 26 in bladder 14. Snap-fit mechanism 60 comprises a one-way plug 62 having suture 40 incorporated therethrough and a collar 64. Suture 40 is placed within inner diameter 42 of tube 24 such that it can be pulled through catheter hub 22. Suture 40 can be used to pull plug 62 through collar 64 so as to secure and deploy retention member 26 to the high-profile state having an oval or bulb shape. In one embodiment of the invention, suture 40 can be pulled until plug 62 is secured to collar 64 on hub 22 as illustrated in
a-7d illustrate different embodiments of a mechanism to collapse retention member 26 for easy catheter removal. A feature of the invention is to preload catheter retention member 26 and assist it to a collapsed position after the securing suture 40 is cut. In other words, when the securing suture 40 is cut, retention member 26 immediately advances to a collapsed position. An advantage of the collapsed position is it ensures the lowest profile of retention member 26 and easy removal of catheter 10. The invention provides a member 80 that can store potential energy for assisting retention member 26 to a collapsed position once the securing suture 40 is cut at the distal end of tube 24. Member 80 can be made from a metallic or nonmetallic material. Some specialty material such as memory wire and plastics may also be incorporated to assist retention member 26.
a illustrates one embodiment of member 80 which comprises one or more wires 82 connected from the distal end of tube 24 to tethered bushing 32 of retention member 26. When retention member 26 is deployed to an oval or bulb shape, wire 82 will bend within the inner diameter 86 of retention member 26. Bending of wire 82 will store potential energy into the wire member. This potential energy can then be used to assist retention member 26 to collapse to its low-profile shape once suture 40 is cut. In another embodiment of the invention as illustrated in
Although the disclosed retention member of the invention has a collapsible oval or bulb shape that facilitates both insertion and withdrawal of the drainage catheter, it will be apparent that other retention members having different collapsible shapes also facilitate insertion and withdrawal of the drainage catheter.
With the wide variety of features and advantages associated with both the apparatus and method of the present invention, one is cautioned not to restrict the concept merely to the embodiments disclosed, but rather to determine the scope of the invention only with reference to the claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US03/21756 | 7/11/2003 | WO | 00 | 1/12/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/006984 | 1/22/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3769983 | Merav | Nov 1973 | A |
4148319 | Kasper et al. | Apr 1979 | A |
4405314 | Cope | Sep 1983 | A |
4407271 | Schiff | Oct 1983 | A |
4747823 | Buchanan | May 1988 | A |
4893623 | Rosenbluth | Jan 1990 | A |
4921484 | Hillstead | May 1990 | A |
5041093 | Chu | Aug 1991 | A |
5147399 | Dellon et al. | Sep 1992 | A |
5246445 | Yachia et al. | Sep 1993 | A |
5454790 | Dubrul | Oct 1995 | A |
5676688 | Jaker et al. | Oct 1997 | A |
5882340 | Yoon | Mar 1999 | A |
5957900 | Quchi | Sep 1999 | A |
5964806 | Cook et al. | Oct 1999 | A |
6042769 | Gannon et al. | Mar 2000 | A |
6183492 | Hart et al. | Feb 2001 | B1 |
6210370 | Chi-Sing et al. | Apr 2001 | B1 |
6264630 | Mickley et al. | Jul 2001 | B1 |
6344595 | Phillips et al. | Feb 2002 | B1 |
6558350 | Hart et al. | May 2003 | B1 |
Number | Date | Country |
---|---|---|
2 414 225 | Dec 2001 | CA |
Number | Date | Country | |
---|---|---|---|
20050177102 A1 | Aug 2005 | US |