Many building methods involve the application of cementitious material to the face of a wall, including stucco, adhered masonry, and other similar applications. Typically, a weather resistive barrier (“WRB”) is applied over the exterior sheathing of the wall, such as plywood, and then a lath or mesh is fastened to the exterior sheathing over the WRB. The lath, which may be metal, fiberglass, or a polymer-based material, provides for mechanical keying of the unhardened stucco or plaster.
In this type of wall construction, the cementitious material itself may be relatively porous. Further, joints or discontinuities in the wall construction may provide a path for water to migrate behind the cementitious material. Condensation may also occur at different points within the wall. In sum, it is not uncommon for moisture to find its way behind the stucco or adhered masonry surface.
Accordingly, the WRB behind the stucco or adhered masonry surface provides a drainage plane against which water may accumulate and drain to the bottom of the wall. At the bottom of the wall, a weep screed or similar structure that provides the bottom edge for the cementitious material may also provide weep holes that allow the water to exit the wall. In some cases, a drainage material, such as a water channel material, may be provided between the WRB and the lath to facilitate the drainage, as generally discussed in U.S. Pat. No. 9,127,467.
In a traditional example application as described above, the wall may include thermal insulation that is located inboard of, or inside, the exterior sheathing. For instance, fiberglass insulation may be unrolled and placed in between the vertical wall studs to which the exterior sheathing is attached. In such an example, the thermal insulation is discontinuous at each of the stud locations within the wall cavity.
Increasingly, modern energy codes and building code standards have begun to call for continuous thermal insulation, which generally takes the form of a foam insulation board, such as polystyrene, that is installed outboard of, or exterior to, the exterior sheathing and over the WRB. The lath is then applied outboard of the continuous insulation. The insulating material is generally impervious to water, aside from the seams that occur between adjacent pieces of the foam insulation board. Thus, a system with dual drainage planes is created—a primary drainage plane on the exterior face of the continuous insulation and immediately behind the lath (and drainage material, if included), and a secondary drainage plane located behind the insulating material, at the WRB. In addition, current best practice is to use a drainage mesh between cladding and the continuous insulation (similar to adhered veneers using a water channel material and spacers without the lath member disclosed in U.S. Pat. No. 9,127,467).
In a first aspect, an example drainage channel is provided. The drainage channel includes (a) a drainage panel for conveying water within a building wall, wherein the drainage panel is impermeable and comprises a first end and a second end and (b) a support panel coupled to the first end or the second end of the drainage panel such that the support panel is configured to be arranged vertically relative to the building wall, where the drainage panel is configured to be arranged either perpendicular to an exterior sheathing of the building wall or angled downward from the first end of the drainage panel toward both the second end of the drainage panel and the exterior sheathing of the building wall.
In a second aspect, a drainage system for attachment to an exterior sheathing of a panel structure is provided. The drainage system includes (a) a weather resistive barrier coupled to the exterior sheathing, where the weather resistive barrier forms a secondary drainage plane of the drainage system, (b) an insulating material coupled to the exterior sheathing, where the insulating material is positioned outboard of and adjacent to the weather resistive barrier, (c) a water channel material coupled to the exterior sheathing, where the water channel material is positioned outboard of and adjacent to the insulating material, and where the water channel material forms a primary drainage plane of the drainage system, (d) a lath member coupled to the exterior sheathing, where the lath member is positioned outboard of and adjacent to the water channel material, and (e) the drainage channel according to the first aspect, where the first end of the drainage channel is positioned outboard of the water channel material such that any water from the primary drainage plane is directed inboard toward the weather resistive barrier.
In a third aspect, a building wall is provided. The building wall includes (a) an exterior sheathing, (b) the drainage system according to the second aspect coupled to the exterior sheathing via a plurality of fasteners, (c) a corner bead comprising a first flange and a second flange, wherein the first flange is fastened to the lath member, and where the second flange is positioned adjacent to a bottom surface of the drainage panel and perpendicular to the first flange, and (d) a cementitious material applied to the lath member and the corner bead.
In a fourth aspect, a method of installing a drainage channel within a building wall is provided. The method includes (a) positioning the drainage system according the second aspect such that a rear panel is positioned inboard of a portion of the weather resistive barrier, such that water in the secondary drainage plane is directed to the drainage well, and where the front panel is positioned outboard of the water channel material, such that any water in the primary drainage plane is directed to the drainage well via the drainage panel, and (b) fastening the rear panel of the drainage channel to the exterior sheathing via a plurality of fasteners.
The features, functions, and advantages that have been discussed can be achieved independently in various examples or may be combined in yet other examples further details of which can be seen with reference to the following description and drawings.
The drawings are for the purpose of illustrating examples, but it is understood that the inventions are not limited to the arrangements and instrumentalities shown in the drawings.
Embodiments of the drainage channel, drainage system, building wall and methods described herein advantageously permit a designated drainage path for moisture that reaches a primary drainage plane to exit the wall. Further, the insulating material of a building wall may have a thickness from 1 inch up to 4 inches or more, which increases the overall thickness of the wall cross-section. The present disclosure provides a return that may extend over several inches at the bottom of a wall, or at the upper jamb of a window or door. In this arrangement, water in the primary drainage plane above the return that may accumulate within the wall on the top surface of the return may minimize moisture damage or freeze/thaw action, among other possibilities. In addition, the embodiments disclosed herein provide a drainage channel solution for conveying water from the primary drainage plane to the secondary drainage plane at the WRB.
The examples that follow are generally discussed with reference to a stucco wall system. However, other types of adhered masonry and stone veneer walls that may include continuous insulation are also contemplated, and may also benefit from the embodiments discussed herein. Still further, other rain screen-type walls (e.g., metal panels rather than masonry-type walls) may benefit from these same embodiments. For example, a rain screen wall is one in which the exterior cladding is not completely waterproof, some incidental water will necessarily penetrate the wall and must be drained.
Moreover, the embodiments provided herein advantageously channel water back to a drainage system near the building structure that includes a drainage path length at least as long as the continuous insulation. And the embodiments provided herein provide new methods and structure to couple the drainage channel to the wall structure both mechanically or with adhesive to the insulation (which itself is fastened to the wall structure) or, alternatively, utilizing coupling methods and structure extending through the wall structure.
In some implementations, a positive gradient from the first end 106 of the drainage panel 105 to the second end 107, to encourage water to drain out from the wall 110. Alternatively, because the drainage channel 100 may be formed from a metal or polymer-based material, among other possibilities, a small amount of water pooling on the drainage panel 105 may have negligible effects. Thus, the drainage panel 105 may be positioned with no pitch within the wall 110, relying on the surface pressure of the pooling water to eventually force the water toward the second end 107 of the drainage panel 105 and the weather resistant barrier 185.
In one example implementation shown in
In one example implementation, the drainage panel 105 is configured to be positioned horizontally within the building wall 110 such that the first end 106 of the drainage panel 105 is positioned outboard of the second end 107 of the drainage panel 105. As shown in
In some implementations, the drainage channel 100 may include both a front panel 135 and a rear panel 125, and thus may be coupled to adjacent wall components at both ends. Further, the drainage channel 100 may include additional components that may be used to integrate the drainage channel 100 within the overall drainage system 180 of the wall 110, described below.
In another example implementation shown in
In still another example implementation shown in
In a further example implementation as shown in
In another example implementation shown in
In still another example implementation, the drainage panel 105 includes a shelf 155 extending from and arranged perpendicular to either a front face 143 of the intermediate panel 140 or a front face 129 of the rear panel 125. In an optional implementation, the shelf 155 includes a plurality of apertures 156 therethrough for coupling the shelf 155 with a second flange 197 of a corner bead 195, discussed below.
In an optional implementation shown in
In an another optional implementation, the drainage panel 105 has a width extending from the first end 106 of the drainage panel 105 to the second end 107 of the drainage panel 105 of at least 1 inch. Depending on the requirements of a given application, the thickness of the insulating material 130 may vary from at least 1 inch, to at least 4 inches in some cases. Accordingly, the drainage panel 105 may include a width extending from the first end 106 to the second end 107 that is comparable to the thickness of the insulating material 130. Further, in some implementations, the drainage channel 100 as discussed herein may be adjustable to accommodate multiple different thicknesses of continuous insulating material 130.
In another example implementation, the rear panel 125 has a height extending from the top end 126 to the bottom end 127 of the rear panel 125. The intermediate panel 140 has a height extending from the top end 141 to the bottom end 142 of the intermediate panel 140. The front panel 135 has a height extending from the top end 136 to the bottom end 137 of the front panel 135. And the height of the rear panel 125 is greater than a combined height of the intermediate panel 140 and the front panel 135, as shown in
In any of the examples discussed above, the drainage channel 100 may be integrally formed as a single component. Alternatively, in an another example implementation shown in
In a further optional implementation, the first and second intermediate panels 170, 175 may be fastened together. Alternatively, the first drainage channel component may be fastened to the exterior sheathing 120, and then the second drainage channel component 175 may partially rest atop the first drainage channel component 170 without fastening the two together.
Referring to
In some example implementations, the bottommost portion 186 of the weather resistant barrier 185 may terminate in front of the rear panel 125, such that any water draining down the weather resistant barrier 185 is directed into the drainage well 150. Alternatively, the rear panel 125 may be fastened to the exterior sheathing 120 behind the continuous insulating material 130, but outboard of the weather resistant barrier 185.
Further, the first end 106 of the drainage panel 105 may be positioned outboard of, and below, the primary drainage plane 182 on the front side 131 of the continuous insulating material 130. The second end 107 of the drainage panel 105 may be positioned inboard of the continuous insulation and adjacent to the weather resistive barrier 185 such that water on the drainage panel 105 can make a fluid connection with water in the secondary drainage plane 181 on the weather resistive barrier 185. For instance, the second end 107 the drainage panel 105 may abut the weather resistive barrier 185, and may be formed with optional grooves or notches 109, as shown in
In one example implementation of the drainage system 180, a rear panel 125 is coupled to the exterior sheathing 120 and inboard of a portion of the weather resistive barrier 185 such that any water in the secondary drainage plane 181 is directed to a drainage well 150 of the drainage channel 100. And a front panel 135 is positioned outboard of the water channel material 190 such that any water in the primary drainage plane 182 is directed to the drainage well 150 via the drainage panel 105.
In another example implementation of the drainage system 180, the drainage system 180 is coupled to the exterior sheathing 120 via a plurality of fasteners. Each fastener in the plurality of fasteners extending through the lath member 160, the water channel material 190, the insulating material 130, and the weather resistive barrier 185. In one optional implementation, the lath member 160 is positioned outboard of the front panel 135. And the lath member 160 is coupled to the front panel 135 by one or more fasteners via a plurality of apertures 138 in the front panel 135. In another optional implementation, the insulating material 130 includes a front side 131 and a back side 132 defining a thickness therebetween. And the thickness of the insulating material 130 is a least 1 inch.
Referring to
In one example implementation, an end 198 of the second flange 197 of the corner bead 195 is positioned atop a shelf 155 of the drainage channel 110. In a further optional implementation, the end 198 of the second flange 197 is fastened to the shelf 155 via the plurality of apertures in the shelf 155. This arrangement may allow the end 198 of the second flange 197 to be supported in part by the drainage channel 100, which is affixed to the exterior sheathing 120. In an alternative arrangement, the end 198 of the second flange 197 terminates as a sort of cantilever, and the stucco return 111 is supported by the stiffness of the first flange 196.
In various implementations, a sealant 199 may be applied between the rear panel 125 and the foundation 112 of the building wall 110.
Referring now to
In one example implementation, method 200 further includes coupling the lath member 160 to a front panel 135 of the drainage channel 100. In a further implementation, coupling the lath member 160 to the front panel 135 of the drainage channel 100 includes wiring the lath member 160, via a plurality of openings in the lath member 160, to the front panel 135 of the drainage channel 100 via the plurality of apertures 138 in the front panel 135.
In a further example implementation, method 200 further includes folding a respective portion of the drainage panel 105 about one of the scored lines 165 of the drainage panel 105 to position the respective portion of the drainage panel 105 parallel to the rear panel 125. And then the front panel 135 is folded about the connection of the front panel 135 and the drainage panel 105 to position the front panel 135 coplanar with the respective portion of the drainage panel 105.
In still another example implementation, method 200 includes fastening a first flange 196 of a corner bead 195 to the lath member 160. Next, a second flange 197 of the corner bead 195 is positioned adjacent to a bottom surface 108 of the drainage panel 105 and perpendicular to the first flange 196. In a further optional implementation, an end 198 of the second flange 197 of the corner bead 195 is positioned atop the shelf 155 of the drainage channel 100. And the second flange 197 of the corner bead 195 may be coupled to the shelf 155 via the plurality of apertures 156 in the shelf 155. For example, in one implementation, coupling the second flange 197 of the corner bead 195 to the shelf 155 includes wiring the second flange 197 of the corner bead 195, via a plurality of openings in the second flange 197 of the corner bead 195, to the shelf 155 via the plurality of apertures 156 in the shelf 155.
In another optional implementation, method 200 includes applying a cementitious material 111 to the lath member 160 and the corner bead 195.
The description of different advantageous arrangements has been presented for purposes of illustration and description, and is not intended to be exhaustive or limited to the examples in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. Further, different advantageous examples may describe different advantages as compared to other advantageous examples. The example or examples selected are chosen and described in order to best explain the principles of the examples, the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various examples with various modifications as are suited to the particular use contemplated.
This application is a continuation of U.S. Non-Provisional patent application Ser. No. 16/379,987, filed on Apr. 10, 2019, which in turn claims priority to U.S. Provisional Application No. 62/655,774, filed Apr. 10, 2018, which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3206806 | Powell | Sep 1965 | A |
3343323 | Mayfield | Sep 1967 | A |
3568391 | Conway | Mar 1971 | A |
4512127 | Attaway | Apr 1985 | A |
5836135 | Hagan et al. | Nov 1998 | A |
6018924 | Tamlyn | Feb 2000 | A |
6293064 | Larson | Sep 2001 | B1 |
6410118 | Reicherts et al. | Jun 2002 | B1 |
6470638 | Larson | Oct 2002 | B1 |
7219477 | Leffler | May 2007 | B2 |
7546719 | Guevara | Jun 2009 | B1 |
7584587 | Ouellette et al. | Sep 2009 | B2 |
7743575 | Ito | Jun 2010 | B2 |
8281530 | Chaussee et al. | Oct 2012 | B2 |
8297005 | Bramble | Oct 2012 | B1 |
8578660 | Nolan et al. | Nov 2013 | B2 |
8596019 | Aitken | Dec 2013 | B2 |
D700717 | Campacci | Mar 2014 | S |
9127467 | Johnson | Sep 2015 | B2 |
9366040 | Singh | Jun 2016 | B2 |
20030177736 | Gatherum | Sep 2003 | A1 |
20060156641 | Takagi | Jul 2006 | A1 |
20060277854 | Egan | Dec 2006 | A1 |
20090183453 | Koessler et al. | Jul 2009 | A1 |
20110302863 | Sourlis | Dec 2011 | A1 |
20120066984 | Thompson et al. | Mar 2012 | A1 |
20160069071 | Remmele | Mar 2016 | A1 |
20170254091 | Friel | Sep 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20200340238 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62655774 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16379987 | Apr 2019 | US |
Child | 16927155 | US |