Culverts, pipes, ditches, and other drainage structures are in wide use for such reasons as preventing soil erosion and controlling runoff. Drainage structures may be installed under roadways and railroads to prevent flooding or to prevent water damage to the surrounding area. In other locations, drainage structures may be used to prevent alteration of the landscape by erosion, or shifting of the soil, for example. In some areas, controlling runoff from snowmelt is another issue that may be addressed, in part, by the use of drainage structures.
In some cases, a drainage structure may lose its function because it is clogged with debris. Drainage structures may become obstructed by soil, rocks, sand, intrusion of plant roots, snow, ice, or other debris. The location of some drainage structures may make them particularly susceptible to blockage. One way to address these problems is to place a covering or grating over the openings of the drainage structure. However, these coverings may require extensive and frequent cleaning and may still allow smaller objects such as sand, silt, and gravel to enter the drainage structure. Additionally, coverings and gratings may not prevent plant roots from clogging the drainage structure. Drainage structures can be removed and replaced periodically but this often involves disturbing existing roadways and other structures. The resultant disruption to roadway or railroad traffic is costly and causes great inconvenience to travelers.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features may not be drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
a is a cutaway view of an embodiment of a drainage structure cleaning tool.
b is an end view of an embodiment of the drainage structure cleaning tool of
c is a side view, partly in section of the culvert cleaning tool of
a is a cutaway view of an embodiment of another drainage structure cleaning tool.
b is an end view of an embodiment of the drainage structure cleaning tool of
a is a perspective view of an embodiment of another drainage structure cleaning tool.
b is a side view of an embodiment of the drainage structure cleaning tool of
c is a side view of an embodiment of the drainage structure cleaning tool of
a is a side view of an embodiment of a drainage structure cleaning brush.
b is an end view of an embodiment of the drainage structure cleaning brush of
c is a partially disassembled view of an embodiment of the drainage structure cleaning brush of
a is a transparent view of an embodiment of another drainage structure cleaning brush.
b is an end view of an embodiment of the drainage structure cleaning brush of
a is a perspective view of another embodiment of a drainage structure cleaning tool.
b is an end view of another embodiment of the drainage structure cleaning tool of
c is another perspective view of the drainage structure cleaning tool of
a is a perspective view of another embodiment of a drainage structure cleaning tool.
b is a top plan view of the drainage structure cleaning tool of
c is a side view of the drainage structure cleaning tool of
a is a perspective view of another embodiment of a drainage structure cleaning tool.
b is a top plan view of the drainage 'structure cleaning tool of
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact.
Referring to
The longitudinal central axis 109 of the drill rod 101 preferably coincides with the central longitudinal axis of the housing 108. The housing 108 may be substantially matched in diameter to the interior of the drainage structure being cleaned. For example, a cylindrical housing 108 may be chosen to approximately match the circular cross-section of certain drainage structures thus allowing a thorough cleaning in one pass. In some instances, however, with a large drainage structure, the housing 108 may be chosen to be smaller than the interior of the drainage structure to allow only portion of the drainage structure to be cleaned with each pass. In one embodiment, the diameter of the housing 108 may range from about 31 inches to about 48 inches and the length from about 14 inches to about 16 inches. The housing 108 may be made from a section of pipe of the appropriate diameter or may be custom made and may be composed of steel, iron, aluminum, or alloys thereof. If needed the housing 108 may also be made from plastic polymers, or carbon fiber, for example.
The housing 108 may be coupled to the rod 101 by one or more supports 106. The supports 106 may extend radially from the rod 101 to the housing 108. Varying numbers of supports 106 may be used depending upon the application and needs of the user. The supports 106 may span the length of the tubular housing 108 but may also be shorter or longer. The supports 106 may be composed of similar or different materials than the housing 108 and rod 101. The supports may be coupled to the rod 101 and housing 108 by welds or by other means. As best seen in FIG. lb, the housing 108 is secured to the rod 101 by two supports 106 spaced approximately 180 degree apart from one another. Other configurations varying in position and number of supports are contemplated.
A plurality of cutting implements 110 are coupled to the inner surface of the housing 108. The cutting implements 110 may be bolted or welded to the housing 108, or secured by some other means. The tubular housing 108 may serve as an anchor point and partial covering for the cutting implements 110. In this way, the cutting implements 108 are kept safely away from the walls of the drainage structure or pipe as well as any liner that may be in place. The housing 108 may also serve to cover and protect nozzles 104 and to keep them from becoming stopped up or clogged. The cutting implements 110 may remain within the housing 108 or extend beyond the distal end of the housing 108 as shown in
In other embodiments, the implements 110 may comprise a narrower or sharpened cutting edge 112. The cutting edge 112 may also be serrated or equipped with teeth as the needs of the user dictate. The cutting implements or paddles 110 may have cutting edges 112 pointing inwardly toward the drill rod 101.
The cutting implements 110 may be constructed of similar or different material than the housing 108 and rod 101. The cutting implements 110 may also comprise high carbon steel or another durable material. For example, the cutting edge 112 may be constructed of high strength material such as high carbon steel or other suitable materials. The shape and position of the cutting implements 110 may dictate whether debris is swept forward (e.g., out from the distal end 107) or rearward, toward the proximal end of the rod, as the needs of the application dictate. The design of the cutting implements 110 may also be such that debris may be swept either forward or rearward depending upon the direction of rotation of the housing 108 if the coupler 102 is designed to enable rotation in either direction. In
The jets, nozzles, or sprayers 104 may be coupled to the distal end 107 of the rod 101 at various points. The positions as shown in
In operation, the drainage structure cleaning tool 100 may be used to clean a drainage structure, drainage structure pipe, drainage ditch, or other elongated and confined area that has become clogged with debris. The cleaning tool 100 (
The cleaning tool 100 having been selected for size and for direction of debris removal may be inserted into the drainage structure. The drilling machine rotates the tool 100 within the drainage structure while injecting the pressurized water. The cutting implements 110 rotate with the housing 108 or rod 101 in a predetermined direction. In certain implementations where the coupler 102 is a threaded coupling, the housing 108 may be rotated clockwise to prevent the threaded coupling from loosening. Debris that is cut or dislodged will be deflected in the appropriate direction by cutting implements 110. The process may be repeated such that the device 100 is worked within the drainage structure in a “back and forth” motion until the drainage structure has been sufficiently cleaned. The nozzles 104 may be activated to assist with loosening of the debris and with debris removal by providing lubrication and pressurized force thereon. In some instances, the rod 101 may not provide sufficient length to clean the entire drainage structure. In such case, extension joints or tubing (not shown) that is compatible with the coupling 102 of the rod 101 and the drilling machine may be attached to coupling 102.
a is a cutaway view of another embodiment of a drainage structure cleaning tool 200 and
The rod 201 is coupled by radial supports 206 to a housing 208. The rod 201 may be coupled coaxially along a center longitudinal axis 209 to the longitudinal axis of the housing 208. The housing 208 may serve to cover and protect nozzles 204 and to keep them from becoming stopped up or clogged. The tubular housing 208 may be chosen to approximately match the circular cross-section of certain drainage structures thus allowing a thorough cleaning in one pass. In some instances, however, with a large drainage structure, the housing 208 may be chosen to be smaller than the interior of the drainage structure to allow only portion of the drainage structure to be cleaned with each pass. In one embodiment, the diameter of the housing 208 may range from about 31 inches to about 48 inches and the length from about 14 inches to about 16 inches. The housing 208 may be made from a section of pipe of the appropriate diameter or may be custom made and may be composed of steel, iron, aluminum, or alloys thereof. If needed, the housing 208 may also be made from plastic, polymers, or carbon fiber, for example.
The tool 200 also comprises a plurality of forward-pointing teeth 214 to provide cutting surfaces for clearing and cutting debris. A series of cutting teeth 214 is attached to the supports 206 to aid in loosening and removing debris. The teeth 214 may be formed integrally with the supports 206 or they may be coupled thereto separately. The teeth 214 may be made of a durable material such iron, steel, aluminum, or alloys thereof. The teeth 214 may also be made from a high carbon steel, carbide, or diamond tipped for even greater durability. The teeth 214 and supports 206 may be constructed such that the teeth 214 protrude beyond the housing 208 at the distal end 207. Thus, the teeth 214 are exposed to blockage in the drainage structure while the walls of the drainage structure remain protected by the housing 208. The teeth 214 may attach at an angle to the supports 206 to improve cutting characteristics and to deflect debris in a desired direction as it is cut. There may be more or fewer teeth 214 than shown here as well as more or fewer supports 206. The angle of the teeth 214 may be configured such that rotation in a specific direction by the housing 208 results in more efficient cutting and debris deflection. It is also contemplated that various characteristics of the embodiments disclosed herein may be incorporated or utilized together. For example, drainage structure cleaning tool 100 may comprise teeth 214 on its supports 106 as shown in
In operation, the cleaning tool 200 may be coupled to a directional drilling machine and to a high pressure water source. The cleaning tool 200 may be inserted into the drainage structure into contact with debris to be removed. The drilling machine then rotates the cleaning tool 200 to commence clearing debris. The teeth 214 may cut through dirt, rocks, plants roots, animal nests, or other debris while moving forward and rotating. As before, this process may be repeated such that a back and forth motion is accomplished to ensure proper cutting of the debris and clearing of the drainage structure. One or more extension rods may be coupled to the drill rod 201 to extend the reach of the tool 200 into the drainage structure. The nozzles 214 may be activated to provide additional cleaning power or to assist in sweeping debris in a desired direction. Debris may be either pushed forward away from the device 200 or drawn towards the original opening depending upon the needs of the cleaning project. Additionally, the cleaning tool 200 may be used alternately with the cleaning tool 100 described above if needed.
a-3c presents various views of another embodiment of a drainage structure cleaning tool 300. The cleaning tool 300 is a “pull bucket” and comprises a drill rod 301 with a proximal end 305, a distal end 307 and a longitudinal axis 309 therethrough. The drill rod 301 may have a length that is compatible for cleaning the length of a drainage structure and may be joined to one or more extension rods (not shown) for elongating the reach of the tool. The rod 301 may range between about 5 feet and 10 feet length and may range from about 2 inches to about 2.5 inches in diameter. The rod 301. may be a commercially available drill rod section or may be custom made depending upon the needs of the user. The rod 301 may also be a commercially available pipe section or may be made from solid stock of steel, aluminum, or other metals or other suitable alloys thereof. In some applications plastics, polymers, fiberglass, or carbon fibers may also be used. The rod 301 may comprise a channel 303 to allow pressurized fluids, such as water, gases, or other solutions to be conducted therethrough while the device 300 is in operation. The coupling 302 may be a tapered threaded joint or another type of coupling. The rod 301 and the coupling 302 may be integral or formed as separate pieces and attached together. The coupling 302 may also be hollow to allow the introduction of pressurized fluids into the rod 301.
Optionally, the drill rod 301 may comprise one or more nozzles in fluid communication with the fluid-conducting channel 303 in the rod 301. The nozzles 304 may direct pressurized fluids into the drainage structure to aid in debris removal.
The drill rod 301 is coupled to a c-shaped scoop or bucket 310 defined by an end portion 320, sidewalls 325 with a plurality of catches 326, and a rearward rim 340. The sidewalls 325 of the bucket 301 do not meet and therefore define a side opening 312. Further, the bucket 301 defines a rearward opening 313 opposing the end portion 320. The end portion 320 and walls floor 325 may be made from iron, steel, or other materials. The end portion 320 and side walls 325 may also be made from other materials such as plastics or polymers if desired. The rod 301 may attach directly to the end portion 320 may pass therethrough to allow placement of an additional nozzle 304, for example. The end portion 320 may include a substantially flat plate having an appropriate shape for the bucket 310. The end portion 320 and/or sidewalls 325 may one or more pieces welded or otherwise joined together. In other embodiments, the rod 301 may be coupled to the bucket 310 at a different location, such as along the sidewall 325 opposite the bucket opening 312, for example.
A support 335 may be coupled across the bucket opening 312 opposite the end portion 320 to increase the structural integrity and load capacity of the cleaning tool 300. The support 335 may attach, by welding, for example, to the side walls 325 and pass over or under the rod 301. The support 335 may also be secured to the rod 301 such as by welding. In other embodiments, the cleaning tool 300 may comprise different or additional supports than the support 335 as shown.
In particular, referring to
As more clearly seen in
However, in some embodiments, the floor 525 may be angled relative the central axis 509 to provide for more efficient gathering of debris when the device 500 is pushed within a drainage structure. Supports, such as support 530 may also be provided to increase load capacity or improve stability of the tool 500, for example. In another embodiment, the open end of the scoop will face toward the coupling 502, so as to allow the scoop to operate by being drawn or pulled rather than pushed.
In operation, the scoop or bucket-type cleaning tools 300, 400, 500 may be used to clean a drainage structure, drainage structure pipe, drainage ditch, or another elongated and confined space that has become clogged with debris. The tools 300, 400, 500 may be used to remove rocks or other large debris as well as debris that may be very dense or heavy, or is otherwise more effectively removed with a scooping tool than a rotating tool, such as tool 100. A tool (300, 400, 500) may be chosen based upon whether it is appropriate to push the debris out of the distal opening or draw it back out of the proximal opening of the drainage structure. Environmental concerns and the elevation and sitting of the drainage structure openings may be determinative factors. The interior shape and dimensions of the drainage structure may also be considered. For example, in a drainage structure with a flat bottom, the rectilinear tool 500 may be used, whereas a round drainage structure may be most effectively cleaned with one of the cylindrical tools 300 and 400. As before, the size of the tool 300, 400, 500 may be chosen to match the clearance in and around the drainage structure or based on other user preferences.
The chosen tool (300, 400, or 500) may be attached to a directional drilling machine and extension pieces or tubing may be used if needed. If water nozzles (304, 404, or 504, respectively) are provided or needed, a high pressure water supply may then be attached to the tool 300, 400, 500 and the water nozzles tested for blockage and proper operation. The tool 300, 400, 500 may then be inserted into the drainage structure to a desired location. The orientation of the tool 300, 400, 500 relative to the interior of the drainage structure, or relative to the debris to be removed, may be adjusted by partial rotations of the tool 300, 400, 500 by the drilling machine. As the tool 300, 400, 500 is worked into the drainage structure, partial rotations may also be used to clear obstacles or structures within the drainage structure that may not be removable.
When the tool 300, 400, 500 has been inserted to the proper location, the floor 325, 525 of the tool 300, 400, 500 may be rotated towards the debris and the tool 300, 400, 500 may be positioned to scoop or scrape the debris in a desired direction. If the tool 300, 400, 500 becomes overly full, it may be lifted from the debris and removed from the drainage structure. The tool 300, 400, 500 may then be rotated to an “upside down” position to allow the debris to fall out or be removed. The tool 300, 400, 500 may then be reinserted and the process repeated until the drainage structure has been sufficiently cleaned. Water jets 304, 404, 504 may be used to assist in debris removal, for example by softening debris, or by sweeping it in a desired direction. In some cases, the debris in the drainage structure may need to be churned or loosened to allow ease of removal. The bucket or scooping tool 300, 400, 500 may be placed on or near the debris and rotated by the drilling machine to effect the desired mixing or churning action. Water jets 304, 404, 504 may be used here also if needed to increase the effectiveness of the operation. The bucket or scooping tools 300, 400, 500 may also be used in conjunction with the rotating tools 100, 200. One or more extension rods may be used with the tools 300, 400, and 500 to extend the reach of the tool inside the drainage structure.
a is a side view of a drainage structure cleaning brush tool, or finishing brush tool 600.
The forward end plate 606 may comprise steel, iron, aluminum, or another suitable material. In
c is a partially disassembled view of the drainage structure cleaning brush 600 of
The fingers 708 may likewise be composed of a plastic, metal, or other suitable material. The diameter of the bristled portion 702 of the brush segments 602 may range from about 18 inches to about 36 inches, while the diameter of the inner ring may range from about 8 inches to about 12 inches. The thickness of the brush segment 602 may be about one inch. In one embodiment of the device 600 (
a is a transparent view of another embodiment of a drainage structure cleaning brush 800. The brush 800 is built onto a rod 801, which may have a length that is compatible for cleaning the length of a drainage structure and may be joined to one or more extension rods (not shown) for elongating the reach of the tool. The rod 801 may range between about 5 feet and 10 feet in length and ranges from about 2 inches to about 2.5 inches in diameter. The rod 801 may be a commercially available drill rod section or may be custom made depending upon the needs of the user. The rod 801 may also be a commercially available pipe section or may be made from solid stock of steel, aluminum, or other metals or other suitable alloys thereof. In some applications plastics, polymers, fiberglass, or carbon fibers may also be used. The rod 801 may comprise a channel 803 to allow pressurized fluids, such as water, gases, or other solutions to be conducted therethrough while the device 200 is in operation. In this embodiment, a multidirectional nozzle 805 is shown but other nozzles (e.g. 104 or
Drainage structure cleaning tool 800 may also comprise end plates 804 and 806 to hold the brush segments together. However, a rod brace 802 may be utilized as a base for mounting drive rails, mounting bars, or splines 808. The rod brace 802 may be made of a pipe section of constructed from suitable materials such as a metal or plastic. The length and diameter of the rod brace may be selected to match the interior of the brush segments 602 described above. The drive rails 808 may be attached directly to the rod brace 608, by welding, or bolting for example. As shown, the endplates 804, 806 in combination with the rod brace 800 may provide a solid substantially cylindrical surface, to which brush sections 602 may be mounted. The drive rails 808 may be arranged to as to interface with the fingers 708 of brush section 602 (
b is an end view of the drainage structure cleaning brush 800 of
In operation, the drainage structure cleaning brush 600 or 800 may be coupled to a piece of equipment such as a directional drill capable of drilling horizontally. The size of the brush used may be chosen to correspond the size of the drainage structure being cleaned. As before, extension rods may be added to the drill rod to increase the effective reach of the brush. The brush may also be attached to a high pressure water source (e.g., the drilling machine) so that the water nozzles 604, 805 may be used to aid in the cleaning The nozzles 604, 805 may aid by sweeping the debris in a desired direction (e.g., away from the drilling machine, or towards it) or by softening hardened debris for easier sweeping. As described in greater detail below, the brushes 600, 800 may be used as part of a cleaning process that may involve first using other tools that have been described herein,
Depending on environmental and other factors, the proximal end 903 or the distal end 905 may be selected as the debris exit point from the drainage structure 902. Preferably the drainage structure end having the lower elevation is chosen as the debris exit point in order to take advantage of the force of gravity, but this selection is not required. The debris 906 may partially or fully block the drainage structure 902. As shown, the proximal end 903 of the drainage structure 902 is accessible to a directional drilling machine or rig 910. Removal of grating or other safety implements (not shown) to expose the proximal opening of the drainage structure may be necessary, as well as excavation of the immediate area to allow proper access to the drainage structure 902. In this example, the cleaning tool 400 (as in
One an appropriate tool and size has been selected, the tool may be connected to a drilling machine at step 1004, such as a horizontal drilling rig. The connection of the tool to the drilling rig may also involve the use of extension joints as previously described. If water is to be used to assist in the cleaning at step 1006, the water supply is connected at step 1008. In some embodiments, the drilling rig may also serve as a high pressure pump or water supply. Clean water may be used in some embodiments but waste water, water from a local body of water, or another supply of a suitable liquid may also be used. At step 1010, the tool may be inserted into the drainage structure and the cleaning action may commence. As previously described and depending upon the tool currently in use, drilling motions, sweeping motions, or scooping motions may be used to clear debris from the drainage structure. Additionally, it may be necessary for debris to be deposited only in one area as it is removed from the drainage structure. Environmental concerns, for example, may necessitate that removed debris is placed only at one end of the drainage structure and/or that the fluids used in loosening the debris not enter an existing natural body of water. In some environments, the cleaning of a drainage structure may require the use of more than a single tool. For example, a scooping-type tool may be used, followed by a brush.
In some embodiments, two different kinds of routing or rotating tools may be used followed by a brush tool. Some drainage structures may require the use of both scooping tool and routing tools followed by the brush tool and some cleanings may not require the brush at all. At step 1012, a decision may be made as to whether an additional tool is needed. If so, the additional tool may be selected as described beginning at step 1001.
The cleaning of some drainage structures may require additional, optional steps. For example, a liner may be inserted into the cleaned drainage structure at step 1014. A liner may help to prevent degradation of the drainage structure itself, or may helped to slow the subsequent buildup of new debris inside the drainage structure. In some environments, the debris may have to be removed from the cleaning site at step 1016. This may be due to environmental concerns, or concerns with keeping the area free of loose debris, for example. If the area around the end of the drainage structure was excavated to allow proper access, it may be necessary to restore the landscape to its original condition at step 1018. Any grills, coverings, or other safety implements may also be replaced at this step.
a, 11b, and 11c are various views of another embodiment of a drainage structure cleaning tool 1100, also called a barrel cleaning tool. The tool 1100 comprises a drill rod 1102 having a proximal end 1104 and a distal end 1105. At the proximal end 1104, a coupler 1106, such as a splined connection of the type made by Earth Tool Corporation of Wisconsin under the model designation SPLINE-LOCK, may be used to couple tool 1100 to one or more drill string rods and to a directional boring machine or another type of equipment operable to rotate and steer the tool and drill string. The drill rod 1102 defines therein a longitudinal fluid-conducting channel 1108 to direct pressurized fluids to a plurality of nozzles 1110 disposed about the drill rod 1102 proximate its distal end 1105.
The tool 1100 further comprises a barrel housing 1112 coupled substantially coaxially to the drill rod 1102 at its distal end. The cross-sectional shape of the barrel housing 1112 may conform to the cross-sectional shape of the drainage structure to be cleaned. For example, a tool having a having a substantially circular cross-section may be used to clean and clear out a drainage structure with a circular cross-section. On the other hand, a tool having a having a substantially square or rectangular cross-section may be used to clean and clear out a drainage structure with a square or rectangular cross-section. The distal end of barrel housing 1112 is further shaped to define a plurality of integral ripping teeth 1114. The ripping teeth 1114 are shaped and contoured to define a sinusoidal profile with a plurality of peaks and valleys, where the peaks and valleys may be pointed or blunt in profile. The ripping teeth 1114 are operable to tear through and loosen vegetation, compacted soil and other obstructions inside the drainage structure.
At the distal end of the drill rod 1102, a plurality of cutting implements or paddles 1116 couple the barrel housing 1112 to the drill rod 1102. The cutting implements 1116 may be mounted onto the drill rod 1102 at an angle α . from the longitudinal axis 1118 of the drill rod 1102. The angle α. is preferably less than 90 degrees. This angled mounting of the cutting implements 1116 is best seen in
In operation, the drainage structure cleaning tool 1100 may be used to clean a culvert, pipe, drainage ditch, drainage structure, or another elongated and confined area that has become clogged with debris. The cleaning tool 1100 may be coupled or mounted to a horizontal drilling equipment by coupler 1106 and, optionally, one or more extension rods depending on the length of the drainage structure and the location of the blockage. If the cleaning tool 1100 is equipped with nozzles 1110, a high-pressure supply of cleaning fluid may be coupled to the drill rod 1102 to conduct the cleaning fluid in the channel 1108 to the nozzles. A storage tank equipped with a pump may be used as the cleaning fluid supply. The cleaning fluid may be water, steam, or another cleaning solution. The cleaning tool 1100 is selected for size and shape to suit the size and shape of the drainage structure to be cleaned. The drilling machine rotates the tool 1100 within the drainage structure while injecting the pressurized fluid that aids in further loosening the lodged debris. The cutting implements 1116 rotate with the barrel housing 1112 and the drill rod 1102 in a predetermined direction. Debris that is cut or dislodged are thus deflected and swept in the appropriate direction by cutting implements 1116. The process may be repeated such that the tool 1100 makes more than one pass within the drainage structure until most of the debris is sufficiently cleaned.
a, 12b, and 12c are various views of an embodiment of another drainage structure cleaning tool 1200. Cleaning tool 1200 comprises a “pull bucket” 1201 coupled or mounted on a distal end of a drill rod 1206. The pull bucket 1201 has an overall substantially cylindrical shape with a proximal opening 1202, a side opening 1203 integral with the proximal opening 1202, and a distal closed end 1204. The closed distal end of the pull bucket 1201 preferably has an angled construction having an inclined angle β1 shown in
The drill rod 1206 defines therein a longitudinal fluid-conducting channel 1207 that is in fluid-communication with a plurality of nozzles 1222 disposed about the distal end of the drill rod 1206. A proximal end of the drill rod 1206 comprises a splined connection that enable the drill rod to be quickly coupled to one or more drill string rods or extensions. Further, the drill rod 1206 is preferably mounted to the pull bucket 1201 along the side opening 1203 of the pull bucket 1201. This mounting location enables the drill rod 1206 and the support plate 1220 to not interfere with the loading and filling of the pull bucket 1201. The support plate 1220 are mounted so that its flat surfaces are at an angle β2 relative to the longitudinal axis of the rod 1206 (best seen in
In operation, the pull bucket tool 1200 may be used when the proximal end of the drainage structure has been selected as the exit site of the debris. Generally, after a tool of the type shown in
a and 13b are two views of an embodiment of another drainage structure cleaning tool 1300. The cleaning tool 1300 comprises a “push bucket” 1302 with an overall substantially cylindrical shape. The push bucket 1302 comprises a proximal closed end 1304 and a distal open end 1306. The distal open end 1306 is integrally connected to a side opening 1308 of the push bucket 1302. The proximal opening 1306 is contoured to have a digging lip 1310. The digging lip 1310 has an advanced edge ahead of the rest of the push bucket that facilitates digging under or into compacted soil and debris along the sides of the drainage structure. A plurality of catches 1312 are disposed along the digging lip 1310 on the inside wall of the push bucket 1302.
The push bucket 1302 is coupled to or mounted onto a drill rod 1320. The drill rod 1320 defines an inner longitudinal fluid-conducting channel 1322 that is in fluid communication with a plurality of nozzles 1324 disposed at the distal end of the drill rod 1320 inside and/or outside the push bucket 1302. Preferably, the drill rod 1320 is accommodated in an opening 1328 in the proximal closed end 1304 of the push bucket 1302 and is welded or otherwise securely attached to the push bucket 1302. The site of the opening 1328 is preferably near the bottom of the bucket away from the side opening of the bucket. Two support flanges 1326 further affix the drill rod 1320 to the closed proximal end 1304 of the push bucket 1302. Preferably the distal end of the drill rod 1320 terminates well before reaching the digging lip 1310 of the push bucket. Therefore, nearly the entire volume of the push bucket is available to load and convey dislodged and loosened debris from the drainage structure. The proximal end of the drill rod 1320 may comprise a coupler 1330 such as a splined connector operable to be connected to one or more extension rods.
In operation, the push bucket tool 1300 may be used when the distal end of the drainage structure has been selected as the exit site of the debris. Generally, after a tool of the type shown in
Although the pull bucket tool 1200 and the pull bucket tool 1300 described above are shown as having substantially cylindrical cross-sections, these tools may utilize buckets of other shapes appropriate for cleaning the drainage structure at hand. For example, a cubic-shaped bucket may be used to clean a square or rectangular-cross sectioned drainage structure.
Any machinery that is operable to controllably rotate and advance the drainage cleaning tools may be used such as a horizontal directional drill manufactured by Vermeer Manufacturing Company of Pella, Iowa. Further, a sonde may be used to enable the detection and steering of the cleaning tools in the drainage structure. In addition, sonde may also be used to determine the angular orientation of the cleaning tool so that the cleaning tooth such as the push and pull buckets may be manipulated to scoop and dump the debris.
Pressurized fluids may be used to further assist in loosening the debris lodged in the drainage structure. In step 1404, the push or pull bucket tools are used to scrape and otherwise remove debris from the sides of the drainage structure. In steps 1406 and 1408, the bucket tool is used to scoop and otherwise load the dislodged debris into the bucket and then guided out of the drainage structure to dump the load outside the drainage structure in step 1410. The bucket tool is steered and rotated to direct the digging lip of the bucket tool along the sides of the drainage structure to scrape off the compacted debris and then to rotate the bucket tool so that the debris load can be emptied from the bucket. Steps 1406-1410 may be performed multiple times to thoroughly clean the drainage structure.
After the drainage structure is thoroughly cleaned, a liner may be positioned in place. In steps 1412 and 1414, the liner is eased into place inside the drainage structure by pulling and/or pushing the liner while rotating the liner to help guiding the liner in place. In step 1416, grout is then injected into the annular space between the liner and drainage structure.
The foregoing has outlined features of several embodiments according to aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.
This application is a continuation of U.S. application Ser. No. 13/736,807, filed Jan. 8, 2013, which is a continuation of U.S. application Ser. No. 11/981,723 , filed Oct. 31, 2007, U.S. Pat. No. 8,347,446, issued Jan. 8, 2013, which is a continuation of U.S. application Ser. No. 11/906,922, filed Oct. 4, 2007, U.S. Pat. No. 7,721,375, issued May 25, 2010, which is a continuation of U.S. application Ser. No. 11/375,886, filed Mar. 15, 2006, abandoned, which is a continuation-in-part of U.S. application Ser. No. 10/857,411, filed May 27, 2004, abandoned, and further claims the benefit of U.S. Provisional Patent Application No. 60/476,568, filed Jun. 6, 2003, U.S. Provisional Application No. 60/476,937, filed Jun. 9, 2003, and U.S. Provisional application No. 60/492,422, filed Aug. 4, 2003, all of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60476568 | Jun 2003 | US | |
60476937 | Jun 2003 | US | |
60492422 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13736807 | Jan 2013 | US |
Child | 14612120 | US | |
Parent | 11981723 | Oct 2007 | US |
Child | 13736807 | US | |
Parent | 11906922 | Oct 2007 | US |
Child | 11981723 | US | |
Parent | 11375886 | Mar 2006 | US |
Child | 11906922 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10857411 | May 2004 | US |
Child | 11375886 | US |