The present invention relates to fluid machinery, and more specifically to drainage systems for compressors.
Compressors typically include one or more separators each fluidly connected with each “stage” of the compressor. These separators are provided to remove liquid from a compressed fluid, such as air, so that the fluid is substantially gaseous. As such, liquid collects in each separator, which must be periodically removed to prevent diminished performance of the separator. Typically, a drain valve is fluidly connected with the chamber of each separator, and these valves are periodically opened to evacuate liquid from the associated chamber. As a variety of faults may prevent the liquid from being evacuated, such as a failure of one or more automatically-operated valves to open as directed or an obstruction in the valve or a fluid line connecting the valve with the chamber, it is important to ensure that the liquid is actually drained from each separator.
In one aspect, the present invention is a drainage system for a compressor assembly, the compressor assembly including at least one separator with a separator chamber. The drainage system comprises a drain valve fluidly coupled with the separator chamber, the valve being adjustable between an open state and a closed state. An actuator is operatively coupled with and configured to adjust the valve between the open and closed states or/and a sensor is configured to sense when the valve is in the open state. A pressure sensor is configured to sense pressure within the chamber. Further, a logic circuit is coupled with the pressure sensor and is configured to determine when the valve either has been adjusted to the open state or should have been adjusted to the open state. The logic circuit is further configured to generate an output signal or/and to operate a device when the chamber pressure remains substantially constant or varies by less than a predetermined amount subsequent to the valve being adjusted to the open state and/or when the chamber pressure varies by at least the predetermined amount subsequent to the valve being adjusted to the open state.
In another aspect, the present invention is again a drainage system for a compressor assembly, the compressor assembly including at least one separator with a separator chamber. The drainage system comprises a drain valve fluidly coupled with the separator chamber, the valve being adjustable between an open state and a closed state, and a pressure sensor configured to sense pressure within the chamber. The drainage system further comprises monitoring means for determining when the valve has been adjusted to the open state and for generating an output signal when the chamber pressure remains substantially constant subsequent to the valve being adjusted to the open state.
In a further aspect, the present invention is a method of operating a drainage system for a compressor assembly, the compressor assembly including at least one separator with a separator chamber. The method comprising the steps of: providing a drain valve fluidly coupled with the chamber, the valve being adjustable between an open state and a closed state; sensing pressure sensor within the chamber; determining when the valve has been adjusted to the open state; and generating an output signal when the chamber pressure remains substantially constant subsequent to the valve being adjusted to the open state.
In yet another aspect, the present invention is again a drainage system for a compressor assembly, the compressor assembly including at least one separator with a chamber. The drainage system comprises a drain valve fluidly coupled with the separator chamber, the valve being adjustable between an open state and a closed state and an actuator is configured to adjust the valve between the open and closed states. A pressure sensor is configured to sense pressure within the separator chamber and a logic circuit coupled with the pressure sensor and with the actuator. The logic circuit is configured to periodically adjust the valve to the open state upon the expiration of a predetermined amount of time and to determine chamber pressure generally at the expiration of each time period. Further, the logic circuit is also configured to generate an output signal and/or operate a device when the chamber pressure either remains substantially constant or varies by less than a predetermined amount generally at the expiration of each time period or/and when the chamber pressure varies by at least the predetermined amount generally at the expiration of each time period.
The foregoing summary, as well as the detailed description of the preferred embodiments of the present invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings, which are diagrammatic, embodiments that are presently preferred. It should be understood, however, that the present invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:
Referring now to the drawings in detail, wherein like numbers are used to indicate like elements throughout, there is shown in
Furthermore, the logic circuit 16 is coupled with each one of the pressure sensors 14 and is preferably coupled with each one of the valve actuators 18 or valve sensors. The logic circuit 16 is configured (i.e., programmed, hardwired, etc.) to determine when each drain valve 12 has been, or at least should have been, adjusted to the open state or/and actually directs the “opening” of each valve 12, as discussed below. Also, the logic circuit 16 is further configured to generate an output signal SO (or to directly operate a device, as described below) either when the separator chamber pressure PC remains substantially constant or varies less than a predetermined amount (i.e., minimal pressure change), or/and when the pressure PC varies by at least a predetermined amount, subsequent to the one of more drain valves 12 being adjusted to the open state, as described in greater detail below.
Preferably, the drainage system 10 is constructed or configured such that the valve(s) 12 are automatically adjusted to the open state (and thus subsequently also to the closed state) periodically or repeatedly upon the expiration of a predetermined amount of time or time period during compressor operation, preferably by means of an associated actuator 18. In other words, system 10 is configured to open, and thereafter close, the valve(s) 12 in repeated time intervals, e.g., every fifteen minutes, every half hour, etc., so that the separator chamber(s) CS are intermittently drained continuously during compressor operation. Most preferably, the logic circuit 16 is further configured to direct the periodic opening and closing of each valve 12 by means of a control signal SC sent to the actuator 18 associated with the particular valve 12. However, the valve(s) 12 may alternatively be opened and closed by another logic circuit or controller (none shown) for directing opening of all the valves 12, or may be operated by an individual controller for each valve 12. In these alternative constructions, the logic circuit 16 would either be configured to merely determine or “track” when the valves 12 are scheduled to be opened (e.g., by a timing circuit, etc.) or may receive a feedback signal from a separately controlled valve actuator(s) 18 or a position sensor on a moveable valve element, whether or not the valve 12 has actually opened or fluid/liquid is permitted to flow through the valve 12, as discussed below.
In all the above or other cases, when the logic circuit 16 determines that the one or more valves 12 have opened or should have been opened, the logic circuit 16 uses pressure readings from the associated sensors 14 to determine if the separator chambers CS have been evacuated, which should result in a reduction of the pressure PC within each chamber CS. As such, when the chamber pressure PC remains substantially constant or reduces only by a minimal amount, the logic circuit 16 is able to determine that the separator chamber CS has not been drained due to a malfunction of the associated actuator 18 or a component of the valve 12, a blockage in the valve 12 or a connected fluid line, etc. More specifically, the logic circuit 16 may send a control signal SC to the actuator 18 of each drain valve 12 or may receive a feedback signal from the associated actuator 18 that the actuator 18 has attempted to operate/open the associated valve 12, but one or more of the actuators 18 may malfunction or attempt to displace a valve closing element (e.g., spindle, etc.) that is immovable or “stuck”. In other cases, the actuator(s) 18 may actually displace the valve closing element, but no flow passes therethrough because of an obstruction in a valve passage or a connected fluid line, etc.
Preferably, the logic circuit 16 is configured to at least generate a first output signal SO1 when the chamber pressure PC of one or more separators 4 remains substantially constant or varies by less than a predetermined amount subsequent to the connected drain valve 12 being adjusted to the open state, either actually opened or when the actuator 18 receives a control signal SC that should have caused the valve 12 to be opened. Thus, the first output signal SO1 is used to indicate a failure condition and/or to initiate corrective action, as discussed below. Further, the logic circuit 16 may also generate a second output signal SO2 when the chamber pressure PC is reduced by a predetermined amount while each drain valve 12 is in the open state. As such, the second output signal SO2 indicates that the connected chamber CS has been drained and the valves 12 and other drainage components (fluid lines, etc.) are functioning properly, as described below.
Thus, the logic circuit 16 is capable of determining when each particular drain valve 12 is functioning properly, i.e., the separator chamber pressure PC “drops” or is reduced by a predetermined amount, or that one or more drain valves 12 are malfunctioning, i.e., the pressure PC remains constant in the separator chamber CS associated with such valves 12. As mentioned above, such malfunctions include, but are not limited to, an actuator 18 not opening a valve 12 after receiving a control signal SC from the logic circuit 16, a blockage in a valve passage, a blockage in a fluid line between a chamber CS and a valve 12 or between a valve 12 and a discharge port (not depicted), or any other occurrence preventing liquid from evacuating a separator chamber CS. In any case, when the logic circuit 16 determines that a malfunction has occurred such that at least one of the separators 4 has not been drained as required, the logic circuit 16 is preferably further programmed or constructed to take an appropriate “emergency” response or corrective action.
More specifically, when the pressure PC in any separator chamber CS does not drop by a certain amount, the logic circuit 16 is preferably configured to transmit the first output signal SO1 to the one or more compressor motors 3 to thereby turn off the motor(s) 3, such that the compressor assembly 1 halts operation. Alternatively or additionally, the logic circuit 16 may be configured to directly operate one or more indicator devices 28, such as a warning light, horn, speaker, etc., or to send the output signal SO1 to a monitoring device 29 (e.g., a display and/or controller) operably coupled with the logic circuit 16 and configured to provide a warning indication and/or create an event record (i.e., within a performance audit database) upon receipt of the signal SO1. Therefore, either the logic circuit 16 automatically shuts down the compressor assembly 1, or provides an operator with the necessary information to enable the operator to take the appropriate action(s) upon the occurrence of a malfunction. Further, the logic circuit 16 may be constructed to first provide a warning to the operator, and then shut down the compressor assembly 1 upon expiration of a predetermined time period if no operator corrective action has occurred.
Preferably, the logic circuit 16 includes a microprocessor 24 electrically coupled with each one of the valve actuators 18 (or valve sensors 20) and with each one of the pressure sensors 14, the microprocessor 24 being configured to generate the one or more output signals SO. Most preferably, the logic circuit 16 includes a programmable logic controller or “PLC” 26 providing the microprocessor 24 and configured to receive inputs from a plurality of the pressure sensors 14 and a plurality of the valve actuators 18 (or sensors 20), as best shown in
Referring to
As best shown in
Having described the basic elements and operation above, these and other components of the compressor drainage system 10 of the present invention, and preferred application(s), are described in detail below.
Referring to
Referring to
Preferably, the compressor assembly 1 also includes a plurality of coolers 8 that are each either disposed about, or fluidly connected with, a portion of each fluid line 5, such that the compressed fluid is cooled prior to separation of the liquid therefrom. Each pressure sensor 14 is preferably configured to sense fluid pressure in a section 5a of the fluid line 5 extending between one cooler 8 and the associated separator 4.
As best shown in
Referring to
Referring to
With the basic structure as described above, the compressor drainage system 10 functions basically in the following manner. Once operation of the compressor assembly 1 is initiated, the valves 12 are generally arranged in the closed state while fluid flowing through the compressor assembly 1, particularly gaseous portions thereof, substantially passes from the compressor inlet port IP valve and out of the compressor outlet port OP. However, as discussed above, the drain valves 12 are periodically opened to evacuate the liquid accumulating within the associated separators 4, preferably automatically at specified time intervals by control signals SC sent to the valve actuators 18 from the PLC 26, as described above. Upon opening each drain valve 12, the PLC 26 may generate the second output signal SO2 when the valves 12 function properly and evacuate the liquid, or may ignore pressure signals within the desired range and take no further action when an appropriate pressure drop occurs. However, when the PLC 26 determines that the pressure PC within one or more separator chambers CS remains substantially constant, or has not experienced a sufficient drop, when the associated valve 12 should have opened, the PLC 26 preferably generates the first output signal SO1 such that the compressor assembly 1 is shut down or/and an appropriate warning is provided to enable an operator to take appropriate remedial action.
It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as generally defined in the appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/666,034, filed on Mar. 29, 2005, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
815812 | Gow | Mar 1906 | A |
1057613 | Baldwin | Apr 1913 | A |
1061656 | Black | May 1913 | A |
1480775 | Marien | Jan 1924 | A |
1622768 | Cook et al. | Mar 1927 | A |
1642454 | Malmstrom | Sep 1927 | A |
2006244 | Kopsa | Jun 1935 | A |
2300766 | Baumann | Nov 1942 | A |
2328031 | Risley | Aug 1943 | A |
2345437 | Tinker | Mar 1944 | A |
2347939 | Down | May 1944 | A |
2383244 | Farmer | Aug 1945 | A |
2602462 | Barrett | Jul 1952 | A |
2811303 | Ault et al. | Oct 1957 | A |
2836117 | Lankford | May 1958 | A |
2868565 | Suderow | Jan 1959 | A |
2897917 | Hunter | Aug 1959 | A |
2932360 | Hungate | Apr 1960 | A |
2954841 | Reistle | Oct 1960 | A |
2955673 | Kennedy et al. | Oct 1960 | A |
3044657 | Horton | Jul 1962 | A |
3175572 | Brooks et al. | Mar 1965 | A |
3191364 | Sylvan | Jun 1965 | A |
3198214 | Lorenz | Aug 1965 | A |
3204696 | De Priester et al. | Sep 1965 | A |
3213794 | Adams | Oct 1965 | A |
3220245 | Van Winkle | Nov 1965 | A |
3273325 | Gerhold | Sep 1966 | A |
3341111 | Sanders | Sep 1967 | A |
3352577 | Medney | Nov 1967 | A |
3395511 | Akerman | Aug 1968 | A |
3420434 | Swearingen | Jan 1969 | A |
3431747 | Hasheimi et al. | Mar 1969 | A |
3454163 | Read | Jul 1969 | A |
3487432 | Jenson | Dec 1969 | A |
3490209 | Fernandes et al. | Jan 1970 | A |
3500614 | Soo | Mar 1970 | A |
3578342 | Satterthwaite et al. | May 1971 | A |
3628812 | Larraide et al. | Dec 1971 | A |
3646727 | Wachsmuth | Mar 1972 | A |
3672733 | Arsenius et al. | Jun 1972 | A |
3694103 | Cohen et al. | Sep 1972 | A |
3814486 | Schurger | Jun 1974 | A |
3829179 | Kurita et al. | Aug 1974 | A |
3915673 | Tamai et al. | Oct 1975 | A |
3975123 | Schibbye | Aug 1976 | A |
4033647 | Beavers | Jul 1977 | A |
4043353 | Shirey | Aug 1977 | A |
4059364 | Anderson et al. | Nov 1977 | A |
4078809 | Garrick et al. | Mar 1978 | A |
4087261 | Hays | May 1978 | A |
4103899 | Turner | Aug 1978 | A |
4112687 | Dixon | Sep 1978 | A |
4117359 | Wehde | Sep 1978 | A |
4135542 | Chisholm | Jan 1979 | A |
4141283 | Swanson et al. | Feb 1979 | A |
4146261 | Edmaier et al. | Mar 1979 | A |
4165622 | Brown, Jr. | Aug 1979 | A |
4174925 | Pfenning et al. | Nov 1979 | A |
4182480 | Theyse et al. | Jan 1980 | A |
4197990 | Carberg et al. | Apr 1980 | A |
4205927 | Simmons | Jun 1980 | A |
4227373 | Amend et al. | Oct 1980 | A |
4258551 | Ritzi | Mar 1981 | A |
4259045 | Teruyama | Mar 1981 | A |
4278200 | Gunnewig | Jul 1981 | A |
4298311 | Ritzi | Nov 1981 | A |
4303372 | Caffrey | Dec 1981 | A |
4333748 | Erickson | Jun 1982 | A |
4334592 | Fair | Jun 1982 | A |
4336693 | Hays et al. | Jun 1982 | A |
4339923 | Hays et al. | Jul 1982 | A |
4347900 | Barrington | Sep 1982 | A |
4363608 | Mulders | Dec 1982 | A |
4374583 | Barrington | Feb 1983 | A |
4375975 | McNicholas | Mar 1983 | A |
4382804 | Mellor | May 1983 | A |
4384724 | Derman et al. | May 1983 | A |
4391102 | Studhalter et al. | Jul 1983 | A |
4396361 | Fraser | Aug 1983 | A |
4432470 | Sopha | Feb 1984 | A |
4438638 | Hays et al. | Mar 1984 | A |
4441322 | Ritzi | Apr 1984 | A |
4442925 | Fukushima et al. | Apr 1984 | A |
4453893 | Hutmaker | Jun 1984 | A |
4453894 | Ferone et al. | Jun 1984 | A |
4463567 | Amend et al. | Aug 1984 | A |
4468234 | McNicholas | Aug 1984 | A |
4471795 | Linhardt | Sep 1984 | A |
4477223 | Giroux | Oct 1984 | A |
4502839 | Maddox et al. | Mar 1985 | A |
4511309 | Maddox | Apr 1985 | A |
4531888 | Buchelt | Jul 1985 | A |
4536134 | Huiber | Aug 1985 | A |
4541531 | Brule | Sep 1985 | A |
4541607 | Hotger | Sep 1985 | A |
4573527 | McDonough | Mar 1986 | A |
4574815 | West et al. | Mar 1986 | A |
4648806 | Alexander | Mar 1987 | A |
4687017 | Danko et al. | Aug 1987 | A |
4737081 | Nakajima et al. | Apr 1988 | A |
4752185 | Butler et al. | Jun 1988 | A |
4807664 | Wilson et al. | Feb 1989 | A |
4813495 | Leach | Mar 1989 | A |
4821737 | Nelson | Apr 1989 | A |
4826403 | Catlow | May 1989 | A |
4830331 | Vindum | May 1989 | A |
4832709 | Nagyszalanczy | May 1989 | A |
4904284 | Hanabusa | Feb 1990 | A |
4984830 | Saunders | Jan 1991 | A |
5007328 | Otterman | Apr 1991 | A |
5024585 | Kralovec | Jun 1991 | A |
5043617 | Rostron | Aug 1991 | A |
5044701 | Watanabe et al. | Sep 1991 | A |
5045046 | Bond | Sep 1991 | A |
5054995 | Kaseley et al. | Oct 1991 | A |
5064452 | Yano et al. | Nov 1991 | A |
5080137 | Adams | Jan 1992 | A |
5163895 | Titus | Nov 1992 | A |
5190440 | Maier et al. | Mar 1993 | A |
5202024 | Andersson et al. | Apr 1993 | A |
5202026 | Lema | Apr 1993 | A |
5203891 | Lema | Apr 1993 | A |
5207810 | Sheth | May 1993 | A |
5211427 | Washizu | May 1993 | A |
5246346 | Schiesser | Sep 1993 | A |
5285123 | Kataoka et al. | Feb 1994 | A |
5306051 | Loker et al. | Apr 1994 | A |
5337779 | Fukuhara | Aug 1994 | A |
5378121 | Hackett | Jan 1995 | A |
5385446 | Hays | Jan 1995 | A |
5421708 | Utter | Jun 1995 | A |
5443581 | Malone | Aug 1995 | A |
5484521 | Kramer | Jan 1996 | A |
5496394 | Nied | Mar 1996 | A |
5500039 | Mori et al. | Mar 1996 | A |
5525034 | Hays | Jun 1996 | A |
5525146 | Straub | Jun 1996 | A |
5531811 | Kloberdanz | Jul 1996 | A |
5538259 | Uhrner et al. | Jul 1996 | A |
5542831 | Scarfone | Aug 1996 | A |
5575309 | Connell | Nov 1996 | A |
5585000 | Sassi | Dec 1996 | A |
5605172 | Schubert et al. | Feb 1997 | A |
5628623 | Skaggs | May 1997 | A |
5634492 | Steinruck et al. | Jun 1997 | A |
5640472 | Meinzer et al. | Jun 1997 | A |
5641280 | Timuska | Jun 1997 | A |
5653347 | Larsson | Aug 1997 | A |
5664420 | Hays | Sep 1997 | A |
5682759 | Hays | Nov 1997 | A |
5683235 | Welch | Nov 1997 | A |
5685691 | Hays | Nov 1997 | A |
5687249 | Kato | Nov 1997 | A |
5693125 | Dean | Dec 1997 | A |
5703424 | Dorman | Dec 1997 | A |
5709528 | Hablanian | Jan 1998 | A |
5713720 | Barhoum | Feb 1998 | A |
5720799 | Hays | Feb 1998 | A |
5749391 | Loutzenhiser | May 1998 | A |
5750040 | Hays | May 1998 | A |
5775882 | Kiyokawa et al. | Jul 1998 | A |
5779619 | Borgstrom et al. | Jul 1998 | A |
5795135 | Nyilas et al. | Aug 1998 | A |
5800092 | Nill et al. | Sep 1998 | A |
5848616 | Vogel et al. | Dec 1998 | A |
5850857 | Simpson | Dec 1998 | A |
5853585 | Nesseth | Dec 1998 | A |
5863023 | Evans et al. | Jan 1999 | A |
5899435 | Mitsch et al. | May 1999 | A |
5935053 | Strid | Aug 1999 | A |
5938803 | Dries | Aug 1999 | A |
5938819 | Seery | Aug 1999 | A |
5946915 | Hays | Sep 1999 | A |
5951066 | Lane et al. | Sep 1999 | A |
5965022 | Gould | Oct 1999 | A |
5967746 | Hagi et al. | Oct 1999 | A |
5971702 | Afton et al. | Oct 1999 | A |
5971907 | Johannemann et al. | Oct 1999 | A |
5980218 | Takahashi et al. | Nov 1999 | A |
5988524 | Odajima et al. | Nov 1999 | A |
6027311 | Hill et al. | Feb 2000 | A |
6035934 | Stevenson et al. | Mar 2000 | A |
6059539 | Nyilas et al. | May 2000 | A |
6068447 | Foege | May 2000 | A |
6090174 | Douma et al. | Jul 2000 | A |
6090299 | Hays et al. | Jul 2000 | A |
6113675 | Branstetter | Sep 2000 | A |
6122915 | Hays | Sep 2000 | A |
6123363 | Burgard et al. | Sep 2000 | A |
6145844 | Waggott | Nov 2000 | A |
6149825 | Gargas | Nov 2000 | A |
6151881 | Ai et al. | Nov 2000 | A |
6196962 | Purvey et al. | Mar 2001 | B1 |
6206202 | Galk et al. | Mar 2001 | B1 |
6214075 | Filges et al. | Apr 2001 | B1 |
6217637 | Toney et al. | Apr 2001 | B1 |
6227379 | Nesseth | May 2001 | B1 |
6277278 | Conrad et al. | Aug 2001 | B1 |
6312021 | Thomas | Nov 2001 | B1 |
6314738 | Hays | Nov 2001 | B1 |
6372006 | Pregenzer et al. | Apr 2002 | B1 |
6375437 | Nolan | Apr 2002 | B1 |
6383262 | Marthinsen et al. | May 2002 | B1 |
6394764 | Samurin | May 2002 | B1 |
6398973 | Saunders et al. | Jun 2002 | B1 |
6402465 | Maier | Jun 2002 | B1 |
6426010 | Lecoffre et al. | Jul 2002 | B1 |
6464469 | Grob et al. | Oct 2002 | B1 |
6467988 | Czachor et al. | Oct 2002 | B1 |
6468426 | Klass | Oct 2002 | B1 |
6485536 | Masters | Nov 2002 | B1 |
6530484 | Bosman | Mar 2003 | B1 |
6530979 | Firey | Mar 2003 | B2 |
6531066 | Saunders et al. | Mar 2003 | B1 |
6537035 | Shumway | Mar 2003 | B2 |
6540917 | Richards et al. | Apr 2003 | B1 |
6547037 | Kuzdzal | Apr 2003 | B2 |
6592654 | Brown | Jul 2003 | B2 |
6596046 | Conrad et al. | Jul 2003 | B2 |
6599086 | Soja | Jul 2003 | B2 |
6607348 | Jean | Aug 2003 | B2 |
6616719 | Sun et al. | Sep 2003 | B1 |
6617731 | Goodnick | Sep 2003 | B1 |
6629825 | Stickland et al. | Oct 2003 | B2 |
6631617 | Dreiman et al. | Oct 2003 | B1 |
6658986 | Pitla et al. | Dec 2003 | B2 |
6659143 | Taylor et al. | Dec 2003 | B1 |
6669845 | Klass | Dec 2003 | B2 |
6688802 | Ross et al. | Feb 2004 | B2 |
6707200 | Carroll et al. | Mar 2004 | B2 |
6718955 | Knight | Apr 2004 | B1 |
6719830 | Illingworth et al. | Apr 2004 | B2 |
6764284 | Oehman, Jr. | Jul 2004 | B2 |
6776812 | Komura et al. | Aug 2004 | B2 |
6802693 | Reinfeld et al. | Oct 2004 | B2 |
6802881 | Illingworth et al. | Oct 2004 | B2 |
6811713 | Arnaud | Nov 2004 | B2 |
6817846 | Bennitt | Nov 2004 | B2 |
6837913 | Schilling et al. | Jan 2005 | B2 |
6843836 | Kitchener | Jan 2005 | B2 |
6878187 | Hays et al. | Apr 2005 | B1 |
6893208 | Frosini et al. | May 2005 | B2 |
6907933 | Choi et al. | Jun 2005 | B2 |
6979358 | Ekker | Dec 2005 | B2 |
7000893 | Yakushi | Feb 2006 | B2 |
7001448 | West | Feb 2006 | B1 |
7013978 | Appleford et al. | Mar 2006 | B2 |
7022150 | Borgstrom et al. | Apr 2006 | B2 |
7022153 | McKenzie | Apr 2006 | B2 |
7025890 | Moya | Apr 2006 | B2 |
7033410 | Hilpert et al. | Apr 2006 | B2 |
7033411 | Carlsson et al. | Apr 2006 | B2 |
7056363 | Carlsson et al. | Jun 2006 | B2 |
7063465 | Wilkes et al. | Jun 2006 | B1 |
7112036 | Lubell et al. | Sep 2006 | B2 |
7131292 | Ikegami et al. | Nov 2006 | B2 |
7144226 | Pugnet et al. | Dec 2006 | B2 |
7159723 | Hilpert et al. | Jan 2007 | B2 |
7160518 | Chen et al. | Jan 2007 | B2 |
7169305 | Gomez | Jan 2007 | B2 |
7185447 | Arbeiter | Mar 2007 | B2 |
7204241 | Thompson | Apr 2007 | B2 |
7241392 | Maier | Jul 2007 | B2 |
7244111 | Suter et al. | Jul 2007 | B2 |
7258713 | Eubank et al. | Aug 2007 | B2 |
7270145 | Koezler | Sep 2007 | B2 |
7288202 | Maier | Oct 2007 | B2 |
7314560 | Yoshida et al. | Jan 2008 | B2 |
7323023 | Michele et al. | Jan 2008 | B2 |
7328749 | Reitz | Feb 2008 | B2 |
7335313 | Moya | Feb 2008 | B2 |
7377110 | Sheridan et al. | May 2008 | B2 |
7381235 | Koene et al. | Jun 2008 | B2 |
7396373 | Lagerstedt et al. | Jul 2008 | B2 |
7399412 | Keuschnigg | Jul 2008 | B2 |
7435290 | Lane et al. | Oct 2008 | B2 |
7445653 | Trautmann et al. | Nov 2008 | B2 |
7470299 | Han et al. | Dec 2008 | B2 |
7473083 | Oh et al. | Jan 2009 | B2 |
7479171 | Cho et al. | Jan 2009 | B2 |
7494523 | Oh et al. | Feb 2009 | B2 |
7501002 | Han et al. | Mar 2009 | B2 |
7520210 | Theodore, Jr. et al. | Apr 2009 | B2 |
7575422 | Bode et al. | Aug 2009 | B2 |
7578863 | Becker et al. | Aug 2009 | B2 |
7591882 | Harazim | Sep 2009 | B2 |
7594941 | Zheng et al. | Sep 2009 | B2 |
7594942 | Polderman | Sep 2009 | B2 |
7610955 | Irwin, Jr. | Nov 2009 | B2 |
7628836 | Baronet et al. | Dec 2009 | B2 |
7637699 | Albrecht | Dec 2009 | B2 |
7674377 | Crew | Mar 2010 | B2 |
7677308 | Kolle | Mar 2010 | B2 |
7708537 | Bhatia et al. | May 2010 | B2 |
7708808 | Heumann | May 2010 | B1 |
7744663 | Wallace | Jun 2010 | B2 |
7748079 | McDowell et al. | Jul 2010 | B2 |
7766989 | Lane et al. | Aug 2010 | B2 |
7811344 | Duke et al. | Oct 2010 | B1 |
7811347 | Carlsson et al. | Oct 2010 | B2 |
7815415 | Kanezawa et al. | Oct 2010 | B2 |
7824458 | Borgstrom et al. | Nov 2010 | B2 |
7824459 | Borgstrom et al. | Nov 2010 | B2 |
7846228 | Saaski et al. | Dec 2010 | B1 |
20020009361 | Reichert et al. | Jan 2002 | A1 |
20030029318 | Firey | Feb 2003 | A1 |
20030035718 | Langston et al. | Feb 2003 | A1 |
20030136094 | Illingworth et al. | Jul 2003 | A1 |
20040007261 | Cornwell | Jan 2004 | A1 |
20040170505 | Lenderink et al. | Sep 2004 | A1 |
20050173337 | Costinel | Aug 2005 | A1 |
20060065609 | Arthur | Mar 2006 | A1 |
20060090430 | Trautman et al. | May 2006 | A1 |
20060096933 | Maier | May 2006 | A1 |
20060157251 | Stinessen et al. | Jul 2006 | A1 |
20060157406 | Maier | Jul 2006 | A1 |
20060193728 | Lindsey et al. | Aug 2006 | A1 |
20060222515 | Delmotte et al. | Oct 2006 | A1 |
20060230933 | Harazim | Oct 2006 | A1 |
20060239831 | Garris, Jr. | Oct 2006 | A1 |
20060254659 | Ballott et al. | Nov 2006 | A1 |
20060275160 | Leu et al. | Dec 2006 | A1 |
20070029091 | Stinessen et al. | Feb 2007 | A1 |
20070036646 | Nguyen et al. | Feb 2007 | A1 |
20070051245 | Yun | Mar 2007 | A1 |
20070062374 | Kolle | Mar 2007 | A1 |
20070065317 | Stock | Mar 2007 | A1 |
20070084340 | Dou et al. | Apr 2007 | A1 |
20070140870 | Fukanuma et al. | Jun 2007 | A1 |
20070151922 | Mian | Jul 2007 | A1 |
20070163215 | Lagerstadt | Jul 2007 | A1 |
20070172363 | Laboube et al. | Jul 2007 | A1 |
20070196215 | Frosini et al. | Aug 2007 | A1 |
20070227969 | Dehaene et al. | Oct 2007 | A1 |
20070294986 | Beetz | Dec 2007 | A1 |
20080031732 | Peer et al. | Feb 2008 | A1 |
20080039732 | Bowman | Feb 2008 | A9 |
20080246281 | Agrawal et al. | Oct 2008 | A1 |
20080315812 | Balboul | Dec 2008 | A1 |
20090013658 | Borgstrom et al. | Jan 2009 | A1 |
20090015012 | Metzler et al. | Jan 2009 | A1 |
20090025562 | Hallgren et al. | Jan 2009 | A1 |
20090025563 | Borgstrom et al. | Jan 2009 | A1 |
20090151928 | Lawson | Jun 2009 | A1 |
20090169407 | Yun | Jul 2009 | A1 |
20090173095 | Bhatia et al. | Jul 2009 | A1 |
20090266231 | Franzen et al. | Oct 2009 | A1 |
20090304496 | Maier | Dec 2009 | A1 |
20090321343 | Maier | Dec 2009 | A1 |
20090324391 | Maier | Dec 2009 | A1 |
20100007133 | Maier | Jan 2010 | A1 |
20100007283 | Johal et al. | Jan 2010 | A1 |
20100021292 | Maier et al. | Jan 2010 | A1 |
20100038309 | Maier | Feb 2010 | A1 |
20100043288 | Wallace | Feb 2010 | A1 |
20100043364 | Curien | Feb 2010 | A1 |
20100044966 | Majot et al. | Feb 2010 | A1 |
20100072121 | Maier | Mar 2010 | A1 |
20100074768 | Maier | Mar 2010 | A1 |
20100083690 | Sato et al. | Apr 2010 | A1 |
20100090087 | Maier | Apr 2010 | A1 |
20100143172 | Sato et al. | Jun 2010 | A1 |
20100163232 | Kolle | Jul 2010 | A1 |
20100183438 | Maier et al. | Jul 2010 | A1 |
20100239419 | Maier et al. | Sep 2010 | A1 |
20100239437 | Maier | Sep 2010 | A1 |
20100247299 | Maier | Sep 2010 | A1 |
20100257827 | Lane et al. | Oct 2010 | A1 |
20110017307 | Kidd et al. | Jan 2011 | A1 |
20110061536 | Maier et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
2647511 | Oct 2007 | CA |
301285 | Oct 1991 | EP |
1582703 | Oct 2005 | EP |
2013479 | Jan 2009 | EP |
7838631.5 | Dec 2009 | EP |
2323639 | Sep 1998 | GB |
2337561 | Nov 1999 | GB |
54099206 | Jan 1978 | JP |
08 068501 | Mar 1996 | JP |
8-284961 | Nov 1996 | JP |
2002 242699 | Aug 2002 | JP |
3711028 | Oct 2005 | JP |
2005291202 | Oct 2005 | JP |
2009085521 | Feb 2008 | KR |
2008012579 | Dec 2008 | MX |
9524563 | Sep 1995 | WO |
0117096 | Mar 2001 | WO |
2007043889 | Apr 2007 | WO |
2007103248 | Sep 2007 | WO |
2007120506 | Oct 2007 | WO |
2008036221 | Mar 2008 | WO |
2008039446 | Mar 2008 | WO |
2008039491 | Apr 2008 | WO |
2008039731 | Apr 2008 | WO |
2008039732 | Apr 2008 | WO |
2008039733 | Apr 2008 | WO |
2008039734 | Apr 2008 | WO |
2008036394 | Jul 2008 | WO |
2009111616 | Sep 2009 | WO |
2009158252 | Dec 2009 | WO |
2009158253 | Dec 2009 | WO |
2010083416 | Jul 2010 | WO |
2010083427 | Jul 2010 | WO |
2010107579 | Sep 2010 | WO |
2010110992 | Sep 2010 | WO |
2011034764 | Mar 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20060222515 A1 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
60666034 | Mar 2005 | US |