Dramatic Improvements to the Doubly Labeled Water Technique by Measurement of 17O

Information

  • Research Project
  • 8201599
  • ApplicationId
    8201599
  • Core Project Number
    R43DK093362
  • Full Project Number
    1R43DK093362-01
  • Serial Number
    93362
  • FOA Number
    PA-10-050
  • Sub Project Id
  • Project Start Date
    8/10/2011 - 13 years ago
  • Project End Date
    7/31/2012 - 12 years ago
  • Program Officer Name
    DENSMORE, CHRISTINE L
  • Budget Start Date
    8/10/2011 - 13 years ago
  • Budget End Date
    7/31/2012 - 12 years ago
  • Fiscal Year
    2011
  • Support Year
    1
  • Suffix
  • Award Notice Date
    8/9/2011 - 13 years ago
Organizations

Dramatic Improvements to the Doubly Labeled Water Technique by Measurement of 17O

DESCRIPTION (provided by applicant): The high prevalence of obesity in the US is a major public health concern, as overweight and obese individuals are at increased risk for many chronic diseases. Obesity stems from an imbalance between total caloric consumption and total energy expenditure (TEE), therefore accurate measurements of TEE play a pivotal role in understanding and ultimately reversing this epidemic. The gold standard for measuring TEE in free-living individuals is the doubly labeled water (DLW) method. The major limitations of the DLW method include high cost and precision of only 1 5% for individual measurements. In this Small Business Innovative Research (SBIR) project, Los Gatos Research (LGR) will develop, fabricate, and test a novel, laser-based analyzer to dramatically improve DLW measurements of TEE by concurrently measuring 17O/16O to correct for natural isotopic fluctuations in 18O and 2H. The Triple Isotope Water Analyzer (TIWA), which will be based on LGR's patented, laser-based Off-Axis ICOS technology, will be capable of real-time, simultaneous, high-throughput (50 samples/day) monitoring of 2H/1H, 18O/16O, and 17O/16O in H2O from human bodily fluids (e.g., blood, urine, and plasma), with a target accuracy of better than 10.60 for 2H/1H, 10.20 for 18O/16O, and 10.30 for 17O/16O at natural isotopic abundances. For enriched body waters that have been labeled with 2H and 18O, the target accuracy will be comparable to isotope ratio mass spectrometry and better than 11.50 for 2H/1H, 10.50 for 18O/16O. The TIWA will allow quantification of isotopic background fluctuation during measurements of TEE, eliminating the significant "constant background" assumption made during DLW experiments. Measurement of the isotopic background fluctuation will allow for much smaller isotopic doses to be used, substantially reducing the cost of TEE measurements. Alternatively, these measurements can be used to significantly increase the accuracy of the DLW technique, introducing the possibility of extending this technique from population studies to the accurate assessment of the TEE of individual subjects. During Phase I, LGR will work with Professor Edward Melanson, an established researcher of metabolic studies, and Professor John Speakman, a key developer of the DLW method, to demonstrate a prototype instrument for measurements using vacuum-distilled, clinical samples. The correlation in background fluctuations between 2H/1H, 18O/16O, and 17O/16O from 40 humans will be quantified to demonstrate the applicability of using the 17O/16O signal to correct for background fluctuations in DLW experiments. Finally, two individuals will be measured using the DLW method to directly compare the conventional double isotope measurement to the newly-developed triple isotope measurement. At the conclusion of this research project, LGR will have demonstrated the use of the TIWA for DLW measurements and empirically determined the improvement in TEE accuracy and reduction in the DLW method cost due to the measurement of background fluctuation using 17O/16O. PUBLIC HEALTH RELEVANCE: The high prevalence of obesity in the US is a major public health concern, as overweight and obese individuals are at increased risk for many chronic diseases. Obesity stems from an imbalance between total caloric consumption and total energy expenditure, therefore accurate measurements of total energy expenditure (TEE) play a pivotal role in understanding and ultimately reversing this epidemic. This Small Business Innovative Research (SBIR) project will allow direct quantification of isotopic background fluctuation during doubly-labeled water measurements of TEE, potentially reducing the cost of isotope dose for TEE measurements from approximately $400 to $80 per adult subject and thereby greatly increasing the application of TEE measurements for obesity studies.

IC Name
NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES
  • Activity
    R43
  • Administering IC
    DK
  • Application Type
    1
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    149406
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    847
  • Ed Inst. Type
  • Funding ICs
    NIDDK:149406\
  • Funding Mechanism
    SBIR-STTR
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    LOS GATOS RESEARCH
  • Organization Department
  • Organization DUNS
    928805761
  • Organization City
    MOUNTAIN VIEW
  • Organization State
    CA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    940411529
  • Organization District
    UNITED STATES