Drape management assembly for robotic surgical systems

Information

  • Patent Grant
  • 12029523
  • Patent Number
    12,029,523
  • Date Filed
    Wednesday, November 28, 2018
    6 years ago
  • Date Issued
    Tuesday, July 9, 2024
    6 months ago
Abstract
A drape management assembly for a robotic surgical system includes a clip having a base portion configured for selective connection to the robotic surgical system and a grasping portion extending from the base portion. The base portion and the grasping portion may define a cavity therebetween. The base portion and the grasping portion may be arranged to retain a quantity of a surgical drape in the cavity to minimize an excess quantity of a surgical drape sheathed over a robotic arm of the robotic surgical system.
Description
BACKGROUND

Robotic surgical systems have been used in minimally invasive medical procedures. Some robotic surgical systems include a console supporting a robotic arm, and a robotic surgical instrument having at least one end effector (e.g., forceps or a grasping tool) mounted to the robotic arm via a wrist assembly. In some systems, cables extend from the console, through the robotic arm, and connect to the wrist assembly and/or end effector to provide mechanical power to the end effector for its operation and movement.


During a medical procedure, the end effector and the wrist assembly are inserted into a small incision (via a cannula) or a natural orifice of a patient to position the end effector at a work site within the body of the patient. In order to establish and maintain a sterile barrier between the patient, a surgical field, and/or the robotic surgical system, a drape may be used to enclose or sheath a portion of the robotic surgical system.


However, it is often the case that excess draping material may interfere with the medical procedure by interfering with a movement of the robotic arm or robotic surgical instrument and/or getting in the way of medical personnel.


Accordingly, a need exists for a way to contain excess draping material during a medical procedure.


SUMMARY

The present disclosure relates to robotics surgical systems, and more specifically, to drape management assemblies for robotic assisted surgery.


According to an aspect of the present disclosure, a drape management assembly for a robotic surgical system is provided, including a clip having a base portion configured for selective connection to the robotic surgical system and a grasping portion extending from the base portion. The base portion and the grasping portion may define a cavity therebetween. The base portion and the grasping portion may be arranged to retain a quantity of a surgical drape in the cavity to minimize an excess quantity of a surgical drape sheathed over a robotic arm of the robotic surgical system.


In embodiments, each of the base portion and the grasping portion may define a first axis, the first axis of the base portion and the first axis of the grasping portion being at an angle relative to each other.


In other embodiments, a distal end portion of the grasping portion may define a lip having a second axis that may be at an angle relative to the first axis of the grasping portion.


In yet other embodiments, a tab may extend from the lip of the grasping portion, the tab defining a third axis that may be at an angle relative to the second axis of the lip.


In still yet other embodiments, the clip may include an insert configured to couple to the clip, the insert including a top surface having a plurality of protrusions extending therefrom. The plurality of protrusions may include a plurality of flanges extending from a surface thereof. The insert may include a frictional bottom surface configured for contact with a surgical drape, whereby a gripping of the surgical drape by the clip is enhanced.


In embodiments, a plurality of slots may be defined through the clip, the plurality of slots of the clip configured to receive the plurality of protrusions of the insert to couple the insert to the clip.


In other embodiments, when the insert is coupled to the clip, the clip may be disposed between a bottom surface of the plurality of flanges and the top surface of the insert.


In yet other embodiments, the clip may be coated from a material selecting from the group consisting of rubber and silicone.


In still yet other embodiments, the clip may be formed from a material selected from the group consisting of plastic, steel, stainless steel, spring steel. and sheet metal.


In embodiments, the clip may be plated with a material selected from the group consisting of electroless nickel, bright nickel, chrome, and zinc.


In other embodiments, the insert may be formed from a material selected from the group consisting of silicone, natural rubber, nitrile, and urethane.


In yet other embodiments, the clip may include an elbow interconnecting the base portion and the grasping portion, and the elbow may be configured to resiliently bias the grasping portion of the clip towards an approximated position.


In still yet other embodiments, the clip may be movable between an approximated position and an unapproximated position relative to the robotic surgical instrument.


According to another aspect of the present disclosure, a robotic surgical assembly may be provided including a robotic arm, a surgical drape, and a clip configured to couple the surgical drape to the robotic arm. The clip may include a base portion configured for selective connection to the robotic arm and a grasping portion extending from the base portion. The base portion and the grasping portion may define a cavity therebetween. The base portion and the grasping portion may be arranged to retain a quantity of the surgical drape in the cavity, whereby an excess quantity of the surgical drape sheathed over the robotic arm may be minimized.


The robotic surgical assembly may include an insert configured to couple to the clip. The insert may include a top surface having a plurality of protrusions extending therefrom. The plurality of protrusions may include a plurality of flanges extending from a surface thereof. The insert may include a frictional bottom surface configured for contact with a surgical drape, whereby a gripping of the surgical drape by the clip is enhanced.


In embodiments, a plurality of slots may be defined through the clip, the plurality of slots of the clip configured to receive the plurality of protrusions of the insert to couple the insert to the clip.


In other embodiments, the surgical drape may be configured to enclose the robotic arm, and the clip and the insert may be configured to incrementally release the excess quantity of the surgical drape such that the robotic arm maintains a full range of motion while enclosed within the surgical drape.


In yet other embodiments, the excess quantity of the surgical drape may be retained between an upper portion of an instrument drive unit and the clip or a slide rail and the clip. The slide rail may be connected to the robotic arm, and the instrument drive unit may be connected to the slide rail.


In still yet other embodiments, the clip may include an elbow interconnecting the base portion and the grasping portion, and the elbow may be configured to resiliently bias the grasping portion of the clip to an approximated position towards the instrument drive unit.


In embodiments, the clip may be formed from a material selected from the group consisting of plastic, steel, stainless steel, spring steel, and sheet metal.


In other embodiments, the base portion of the clip may be coupled to the instrument drive unit or the slide rail, and the grasping portion of the clip may be movable between an approximated position and an unapproximated position relative to the instrument drive unit or the slide rail.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:



FIG. 1 is a schematic illustration of a robotic surgical system including a drape management assembly in accordance with the present disclosure;



FIG. 2 is a front, perspective view of an instrument drive unit of the robotic surgical system and the drape management assembly attached thereto;



FIG. 3 is a rear, perspective view of the instrument drive unit and the drape management assembly of FIG. 2;



FIG. 4 is a perspective view, with parts separated, of the drape management assembly of FIGS. 2 and 3, and illustrating coupling of the drape management assembly to a rear, upper portion of the instrument drive unit;



FIG. 5 is an enlarged view of the indicated area of detail delineated in FIG. 3;



FIG. 6 is a cross-sectional view of an insert of the drape management assembly of FIG. 4 taken along the line 6-6 thereof;



FIG. 7 is a cross sectional view of the drape management assembly taken along the line 7-7 of FIG. 5;



FIG. 8 is a front, perspective view of the drape management assembly positioned on a slide rail of a robotic arm and including a surgical drape sheathing the slide rail of the robotic arm;



FIG. 9 is a partial, side view of the drape management assembly of FIG. 8;



FIG. 10 is a clip in accordance with another embodiment of the present disclosure;



FIG. 11 is a perspective view of another embodiment of a clip, shown attached to an end portion of a slide rail of the robotic arm of FIG. 1; and



FIG. 12 is an enlarged view, of the area of detail designated “12” in FIG. 11.





DETAILED DESCRIPTION

Embodiments of the present disclosure will now be described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term “clinician” refers to a doctor, nurse, or other care provider and may include support personnel. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. As used herein, the term “distal,” as is conventional, will refer to that portion of the instrument, apparatus, device or component thereof which is farther from the user while, the term “proximal,” will refer to that portion of the instrument, apparatus, device or component thereof which is closer to the user. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.


The present disclosure relates to surgical drape management assemblies. Specifically, the drape management assembly may be a clip including a base portion configured for selective connection to the robotic surgical system and a grasping portion extending from the base portion. The base portion and the grasping portion may define a cavity therebetween (when secured to an instrument drive unit of the robotic surgical system), wherein the base portion and the grasping portion are arranged to retain a quantity of a surgical drape in the cavity. The clip minimizes an excess quantity of a surgical drape sheathed over a robotic arm of the robotic surgical system.


Referring initially to FIG. 1, a surgical system, such as, for example, a robotic surgical system 1, generally includes one or more robotic arms 2, 3, a control device 4, and an operating console 5 coupled with control device 4. Robotic arms 2, 3 may each have a robotic surgical assembly 100 and an electromechanical surgical instrument 200 coupled thereto. In some embodiments, robotic surgical assembly 100 may be coupled to an end portion 20a of a slide rail 20 of robotic arms 2, 3.


Operating console 5 includes a display device 6, which is set up to display three-dimensional images, and manual input devices 7, 8, by means of which a clinician (not shown), is able to telemanipulate robotic arms 2, 3 in a first operating mode, as known in principle to a person skilled in the art. Robotic arms 2, 3 may be driven by electric drives (not shown) that are connected to control device 4 (e.g., a computer) which is set up to activate the drives, for example, by means of a computer program, in such a way that robotic arms 2, 3, the attached robotic surgical assembly 100, and thus electromechanical surgical instrument 200 (including the electromechanical end effector, not shown) execute a desired movement according to a movement defined by means of manual input devices 7, 8. Control device 4 may also be set up such that it regulates the movement of robotic arms 2, 3 and/or of the electric drives. To that end, control device 4 may control a plurality of motors, e.g., motors (Motor 1 . . . n), with each motor configured to drive movement of robotic arms 2, 3 in a plurality of directions.


Robotic surgical system 1 is configured for use on a patient “P” positioned (e.g., lying) on a surgical table “ST” to be treated in a minimally invasive manner by means of a surgical instrument, e.g., electromechanical surgical instrument 200. The robotic surgical system 1 may also include more than two robotic arms 2, 3, the additional robotic arms likewise connected to control device 4 and telemanipulatable by means of operating console 5. The robotic surgical assembly 100 may control an instrument drive unit 150 axially movable along the rail 20 of the robotic arms, 2, 3, and configured to drive various operations of an end effector (not explicitly shown) of the electromechanical surgical instrument 200, along a longitudinal axis “X” thereof.


For a detailed description of the construction and operation of a robotic surgical system, reference may be made to U.S. Pat. No. 8,828,023, the entire contents of which are incorporated by reference herein.


With continued reference to FIG. 1, robotic surgical system 1 includes one or more sterile barriers or drapes 30 enclosing or sheathing robotic arms 2, 3, instrument drive units 150, and robotic surgical assemblies 100 coupled thereto. Surgical drape 30 is configured to create an enclosed or protected sterile environment to prevent contamination of a surgical field from robotic arms 2, 3, robotic surgical assemblies 100, instrument drive units 150, and the like. It is envisioned that surgical drape 30 includes excess draping material or portions to provide enough slack such that the enclosed robotic arms 2, 3 and robotic surgical assemblies 100 coupled thereto remain operable in a full range of motion while remaining within the sterile enclosure of surgical drape 30 and without damaging or penetrating surgical drape 30.


With reference to FIGS. 2, 3 and 4, robotic surgical system 1 includes a drape management assembly 300 configured to control and manage the excess draping material, such as, for example, an excess quantity 30a of surgical drape 30 (FIGS. 1, 8, and 9). In embodiments, drape management assembly 300 is operably coupled to an upper portion 150a of the instrument drive unit 150. However, it is contemplated that drape management assembly 300 may be coupled to any surface of instrument drive unit 150, or to alternative or additional components of robotic surgical system 1 (not specifically shown).


With reference to FIG. 4, drape management assembly 300 may generally include a clip 302 having a top surface 302a, a bottom surface 302b, a base portion 310 configured for selective connection to the instrument drive unit 150, and a grasping portion 320 extending from the base portion 310 for affixing or pinning the surgical drape 30 to the instrument drive unit 150.


The base portion 310 of the clip 302 may define apertures 310a, which are configured to align with apertures 151a of the upper portion 150a of the instrument drive unit 150. Fasteners 350a of the drape management assembly 300 are configured to be inserted through apertures 310a of the base portion 310 of the clip 302 and through apertures 151a of the instrument drive unit 150 to affix the clip 302 to the upper portion 150a of the instrument drive unit 150, as shown in FIG. 3. In embodiments, the drape management assembly 300 may utilize any number of apertures 310a or fasteners 350a to couple to a surface of the robotic surgical assembly 100. In certain embodiments, fasteners 350a may be, and not limited to, screws, bolts, pins, dowels, buttons, rivets, etc.


With reference to FIGS. 4 and 9, the base portion 310 of the clip 302 may define an axis “Y.” The grasping portion 320 of the clip 302 may define a first axis “X1” that may be oriented at an angle (e.g., an acute angle) relative to axis “Y” of the base portion 310. A distal end portion of the grasping portion 320 of the clip 302 may include a lip 320a extending therefrom. The lip 320a of the grasping portion 320 of the clip 302 may define a second axis “X2” that may be oriented at an angle (e.g., an obtuse angle) relative to the first axis “X1” of the grasping portion 320. The grasping portion 320 of the clip 302 may further define a tab 320b extending distally of the lip 320a, and may be configured for lifting or otherwise moving the clip 302 when it is coupled to the instrument drive unit 150 for placement of a surgical drape 30 between instrument drive unit 150 and clip 302. The tab 320b of the clip 302 may define a third axis “X3” that may be oriented at an angle relative to the first and second axes “X1” and “X2” of the grasping portion 320 of the clip 302.


Any suitable angle between the respective axes “Y,” “X1,” “X2,” and “X3” is contemplated. For example, the angle between axis “Y” of base portion 310 and axis “X1” of grasping portion 320 may be from about 60 to about 90 degrees, and the angle between axis “X1” of grasping portion 320 and axis “X2” of lip 320a may be from about 80 to about 120 degrees. In embodiments, the angle between axis “Y” of base portion 310 and axis “X1” of grasping portion 320 may be from about 65 to about 75 degrees (e.g., about 71 degrees), and the angle between axis “X1” of grasping portion 320 and axis “X2” of lip 320a may be from about 90 to about 110 degrees (e.g., about 105 degrees).


The base portion 310 and the grasping portion 320 of the clip 302, together with outer surfaces of instrument drive unit 150, may define a cavity or gap 330 therebetween, wherein the base portion 310 and the grasping portion 320 are arranged to retain a quantity of the surgical drape 30 in the cavity or gap 330 of the drape management assembly 300. As such, the drape management assembly 300 minimizes, reduces, or otherwise eliminates an excess quantity 30a (FIGS. 8 and 9) of the surgical drape 30 sheathed over robotic arms 2, 3, of the robotic surgical system 1. In embodiments, the drape management assembly 300 may be configured to incrementally release the excess quantity 30a as necessary to maintain a full range of the robotic arms 2, 3 and the robotic surgical assemblies 100 coupled thereto while remaining within the enclosure of the surgical drape 30. For example, the movement of robotic arms 2, 3 and the robotic surgical assemblies 100 causes a gradual or incremental release of excess quantity 30a of surgical drape 30 from the cavity or gap 330 of clip 302. As the robotic arms 2, 3 and the robotic surgical assemblies 100 move or are otherwise actuated, only the excess quantity 30a necessary for adequately enclosing or sheathing the robotic arms 2, 3 and the robotic surgical assemblies 100 is released from drape management assembly 300, while simultaneously permitting the robotic arms 2, 3 and the robotic surgical assemblies 100 to maintain a full range of motion.


The grasping portion 320 of clip 302 may further define a plurality of slots 325a-325d extending therethrough. In embodiments, a longitudinal axis of slots 325a, 325b may be disposed 90 degrees relative to a longitudinal axis of slots 325c, 325d.


The drape management assembly 300 may further include an insert 340 configured to selectively couple with the clip 302. The insert 340 may be used, e.g., to enhance the ability of the clip 302 to grip the surgical drape 30, and/or the excess quantity 30a of the surgical drape 30. The insert 340 of the drape management assembly 300 includes a top surface 340a and a bottom surface 340b. Insert 340 includes a plurality of protrusions 342a-342d extending therefrom configured to selectively engage the respective slots 325a-325d, of the clip 302. The plurality of protrusions 342a-342d of the insert 340 may further define respective flanges 344a-344d, which extend outwardly from a surface of the protrusions 342a-342d of the insert 340 of the drape management assembly 300. In embodiments, protrusions 342a, 342b of the insert 340 may have a longitudinal axis disposed 90 degrees relative to a longitudinal axis of slots 325a, 325b of clip 302.


With reference to FIGS. 4-7, the insert 340 of the drape management assembly 300 may be dimensioned such that insert 340 substantially conforms to the grasping portion 320 (e.g., a bottom surface of the lip 320a of the grasping portion 320) of the clip 302. In use, to affix the insert 340 to the clip 302, the top surface 340a of the insert 340 is “pressed” into the bottom surface 302b of the clip 302 such that the flanges 344a-344d of the protrusions 342a-342d of the insert 340 are guided or pressed into the respective slots 325a-325d of the clip 302. Such guiding or pressing of the protrusions 342a-342d of the insert 340 into the slots 325a-325d of the clip 302 resiliently biases the flanges 344a-344d of the protrusions 342a-342d inward (not explicitly shown) until the flanges 344a-344d clear or otherwise overcome the slots 325a-325d of the clip 302 and “snap” into contact with the top surface 302a of the clip 302. Specifically, upon clearing the slots 325a-325d of the clip 302, the clip 302 is coupled between a bottom surface of the flanges 344a-344d of the protrusions 342a-342d of the insert 340 and the top surface 340a of the insert 340, as shown in FIG. 7. In use, the insert 340 may be removed from clip 302 (not explicitly shown) by compressing or biasing the flanges 344a-344d of the protrusions 342a-342d of the insert 340 inward to clear slots 325a-325d of the clip 302.


With reference to FIGS. 4, 8, and 9, drape management assembly 300 includes an elbow 350 interconnecting base portion 310 and grasping portion 320 of clip 302. Elbow 350 functions as a spring to resiliently bias the grasping portion 320 of the clip 302 in a direction “D” (FIG. 9) towards the upper portion 150a of the instrument drive unit 150 of the robotic surgical assembly 100. In this manner, the bottom surface 302b of the grasping portion 320 of the clip 302 (or the bottom surface 340b of the insert 340 if attached to the clip 302) is in contact with the instrument drive unit 150. The resilient bias of the elbow 350 urges the grasping portion 320 in the direction “D” such that the grasping portion 320 of the clip 302 (or the insert 340) adequately affixes, grips, or pins the surgical drape 30 onto or against the surface to which it is in contact with, such as, for example, the upper portion 150a of the instrument drive unit 150. In this configuration, the drape management assembly 300 is in an approximated, gripping position.


To deflect or open the grasping portion 320 of the clip 302 from its default position (FIGS. 2, 3, 5, 8, and 9), a force in the direction “U” (FIG. 9) may be applied to the tab 320b of the grasping portion 320 of the clip 302 to flex or bias the elbow 350 of the clip 302 such that the grasping portion 320 moves away from the surgical drape 30 and the upper portion 150a of the instrument drive unit 150 of the robotic surgical assembly 100 to an unapproximated position (not explicitly shown). In the unapproximated position, the surgical drape 30, or an excess quantity 30a of the surgical drape 30, may be removed from between the cavity or gap 330 of the clip 302 and the instrument drive unit 150. Upon removing the surgical drape 30, a clinician may release the grasping portion 320 of clip 302 upon which, the spring bias of elbow 350 of the clip 302 will cause the drape management assembly 300 to return to its initial approximated position (FIGS. 2, 3, 5, 8, and 9).


In embodiments, the clip 302 of the drape management assembly 300 may be formed of a plastic, steel, stainless steel, sheet metal, or any other suitable material such that the clip 302 is capable of withstanding repeated movements or deflections from an approximated position to an unapproximated position without yielding or deforming. In some embodiments, the clip 302 is plated, e.g., through an electroplating process, with an electroless nickel, bright nickel, chrome, zinc, or the like. In other embodiments, the clip 302 of the drape management assembly 300 may be polished, electropolished, barrel-finished, deburred, or the like, e.g., to smooth out the edges of clip 302, for improved appearance or finish, and corrosion protection, or to inhibit cutting or tearing of surgical drape 30.


In embodiments, the insert 340 of the drape management assembly 300 may be formed of a flexible material configured to conform to the bottom surface 302b of the clip 302 while still being able to provide adequate grip to engage the surgical drape 30. For example, the insert 340 may be formed from silicone, natural rubber, nitrile, urethane, and the like. The insert 340 is more flexible than the clip 302 and may have a durometer of about shore A45 to about shore A55. In some embodiments, the insert 340 may have a durometer of about shore A50.


With reference to FIG. 10, a clip 400 is provided in accordance with another embodiment of the present disclosure. Clip 400 may be substantially similar to the embodiment of clip 302 described hereinabove except that clip 400 is not configured for receiving an insert. Therefore, clip 400 may also operate as a device for gripping, pinning, or affixing surgical drape 30 (not explicitly shown) to instrument drive unit 150.


With reference to FIGS. 11 and 12, a clip 500 is provided in accordance with another embodiment of the present disclosure. Clip 500 is substantially similar to the embodiment of clip 302 described above except that clip 500 is specifically configured to be coupled to the slide rail 20 of the robotic arm 2 of the robotic surgical assembly 100 (FIG. 1) rather than the instrument drive unit 150. However, it is contemplated that clip 500 may be attachable to the instrument drive unit 150 (FIG. 2), such as, for example, an upper portion thereof. Due to the substantial similarity between clips 302, 500, only details of clip 500 deemed necessary to elucidate differences from clip 302 will be described in detail.


Clip 500 includes a base portion 510 configured for selective connection to the end portion 20a of the slide rail 20, and a grasping portion 520 extending from the base portion 510 for affixing or pinning the surgical drape 30 (FIG. 9) to the slide rail 20. Base portion 510 of clip 500 is planar and has a curved or bent elbow 550 extending therefrom. The elbow 550 interconnects the base portion 510 and the grasping portion 520. The base portion 510 may be oriented at any suitable angle (e.g., between about 85 and 115 degrees, or between about 90 and 110 degrees) relative to the elbow 550. As such, base portion 510 of clip 500 is substantially perpendicular relative to base portion 310 of clip 302 (FIGS. 2-9).


The base portion 510 of clip 500 defines a pair of apertures (not explicitly shown) therethrough dimensioned for receipt of a pair of fasteners 501, 503 for securing or fixing clip 500 to an outer surface 21 of slide rail 20. In other embodiments, a bottom surface (not explicitly shown) of base portion 510 may have adhesive for securing clip 500 to slide rail 20. When clip 500 is assembled to slide rail 20, clip 500 extends longitudinally along a longitudinal axis defined by slide rail 20, with grasping portion 520 oriented towards end portion 20a of slide rail 20.


Clip 500 may also have an insert 540, similar to insert 340 of FIGS. 2-9, attached to grasping portion 520 for enhancing the ability of grasping portion 520 to hold excess drape 30 between grasping portion 520 and outer surface 21 of slide rail 20.


In use, grasping portion 520 may be moved outwardly relative to base portion 510 about elbow 550 to space grasping portion 520 from outer surface 21 of slide rail 20. With grasping portion 520 spaced from outer surface 21 of slide rail 20, excess drape 30 may be positioned within a cavity 530 cooperatively defined by clip 500 and outer surface 21 of slide rail 20. Upon the cavity 530 receiving excess drape 30, the grasping portion 520 is resiliently biased, via elbow 550, toward outer surface 21 of slide rail 20. As grasping portion 520 moves toward outer surface 21 of slide rail 20, insert 540 engages drape 30 to hold drape 30 against outer surface 21 of slide rail 20, thereby preventing excess drape 30 from exiting cavity 530. In accordance with the present disclosure, it is further contemplated that any clip provided herein may include features or the like, which enhance a gripping and retention of a surgical drape 30 against/to the robotic surgical system. Such features may include and are not limited to ribbing, nubs, coatings, over molding, surface texturing, appliques, and the like.


In embodiments, any clip and/or instrument drive unit 150 provided herein, may include one or more sensors configured to detect the presence of surgical drape 30 between the clip and instrument drive unit 150. The sensors may alert a clinician when surgical drape 30 is initially inserted between the clip and instrument drive unit 150, and/or removed from between the clip and instrument drive unit 150. Such sensors may include, for example, contact sensors, optical sensors, RFID sensors, Ferro-magnetic or magnetic tape sensors, strain gauges, or the like.


In some embodiments, any surface of any clip and/or instrument drive unit 150 provided herein may include an elastomeric material or coating (e.g., a rubberized tape and/or paint) to, for example, increase adhesion with surgical drape 30.


In certain embodiments, any clip provided herein may be a multi-tined clip having a substantially fork-like shape such that surgical drape 30 can, for example, be placed between the tines of the clip to prevent bunching of surgical drape 30, or for individual tines of the clip to deflect by varying amounts in order to accommodate various quantities of surgical drape 30 at various locations along a width of the clip.


It should be understood that the foregoing description is only illustrative of the present disclosure. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications, and variances. The embodiments described with reference to the attached drawings are presented only to demonstrate certain examples of the disclosure. Other elements, steps, methods, and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.

Claims
  • 1. A robotic surgical assembly, comprising: a robotic arm;a surgical drape;a clip configured to couple the surgical drape to the robotic arm, the clip including: a base portion configured for coupling to the robotic arm; anda grasping portion extending from the base portion, the base portion and the grasping portion defining a cavity therebetween, wherein the base portion and the grasping portion are arranged to retain a quantity of the surgical drape in the cavity; andan insert configured to couple to the clip, the insert including: a top surface having a plurality of protrusions extending therefrom, the plurality of protrusions including a plurality of flanges extending from a surface thereof; anda frictional bottom surface configured for contact with the surgical drape,wherein a plurality of slots are defined through the clip, and wherein the plurality of slots are configured to receive the plurality of protrusions of the insert to couple the insert to the clip.
  • 2. A robotic surgical assembly, comprising: a robotic arm;a surgical drape;a clip configured to couple the surgical drape to the robotic arm, the clip including: a base portion configured for coupling to the robotic arm; anda grasping portion extending from the base portion, the base portion and the grasping portion defining a cavity therebetween, wherein the base portion and the grasping portion are arranged to retain a quantity of the surgical drape in the cavity; andan insert configured to couple to the clip, the insert including: a top surface having a plurality of protrusions extending therefrom, the plurality of protrusions including a plurality of flanges extending from a surface thereof; anda frictional bottom surface configured for contact with the surgical drape, wherein the surgical drape is configured to enclose the robotic arm, and the clip and the insert are configured to incrementally release an excess quantity of the surgical drape such that the robotic arm maintains a full range of motion while enclosed within the surgical drape.
  • 3. The robotic surgical assembly of claim 2, wherein the excess quantity of the surgical drape is retained between an upper portion of an instrument drive unit and the clip.
  • 4. A robotic surgical assembly, comprising: a robotic arm;a surgical drape;a clip configured to couple the surgical drape to the robotic arm, the clip including: a base portion configured for coupling to an instrument drive unit or a slide rail of the robotic arm; anda grasping portion extending from the base portion, the base portion and the grasping portion defining a cavity therebetween, wherein the base portion and the grasping portion are arranged to retain a quantity of the surgical drape in the cavity, wherein the clip includes an elbow interconnecting the base portion and the grasping portion, the elbow configured to resiliently bias the grasping portion of the clip to an approximated position towards the instrument drive unit or the slide rail, the slide rail being connected to the robotic arm and the instrument drive unit being connected to the slide rail; andan insert configured to couple to the clip, the insert including: a top surface having a plurality of protrusions extending therefrom, the plurality of protrusions including a plurality of flanges extending from a surface thereof; anda frictional bottom surface configured for contact with the surgical drape.
  • 5. The robotic surgical assembly of claim 4, further comprising a plurality of slots defined through the clip, the plurality of slots configured to receive the plurality of protrusions of the insert to couple the insert to the clip.
  • 6. The robotic surgical assembly of claim 4, wherein the base portion of the clip is coupled to an instrument drive unit or a slide rail, and the grasping portion of the clip is movable between an approximated position and an unapproximated position relative to the instrument drive unit or the slide rail.
  • 7. The robotic surgical assembly of claim 1, wherein the clip is formed from a material selected from the group consisting of plastic, steel, stainless steel, spring steel, and sheet metal.
  • 8. A robotic surgical assembly, comprising: a robotic arm;a surgical drape;a clip configured to couple the surgical drape to the robotic arm, the clip including: a base portion configured for coupling to the robotic arm, wherein the base portion of the clip is coupled to an instrument drive unit or a slide rail; anda grasping portion extending from the base portion, the base portion and the grasping portion defining a cavity therebetween, wherein the base portion and the grasping portion are arranged to retain a quantity of the surgical drape in the cavity, wherein the grasping portion of the clip is movable between an approximated position and an unapproximated position relative to the instrument drive unit or the slide rail; andan insert configured to couple to the clip, the insert including: a top surface having a plurality of protrusions extending therefrom, the plurality of protrusions including a plurality of flanges extending from a surface thereof; anda frictional bottom surface configured for contact with the surgical drape.
  • 9. The robotic surgical assembly of claim 8, further comprising a plurality of slots defined through the clip, the plurality of slots configured to receive the plurality of protrusions of the insert to couple the insert to the clip.
  • 10. The robotic surgical assembly of claim 8, wherein the clip includes an elbow interconnecting the base portion and the grasping portion, the elbow configured to resiliently bias the grasping portion of the clip to an approximated position towards an instrument drive unit or a slide rail, the slide rail being connected to the robotic arm and the instrument drive unit being connected to the slide rail.
  • 11. The robotic surgical assembly of claim 1, wherein the clip includes an elbow interconnecting the base portion and the grasping portion, the elbow configured to resiliently bias the grasping portion of the clip to an approximated position towards an instrument drive unit or a slide rail, the slide rail being connected to the robotic arm and the instrument drive unit being connected to the slide rail.
  • 12. The robotic surgical assembly of claim 1, wherein the clip is formed from a material selected from the group consisting of plastic, stainless steel, spring steel, and sheet metal.
  • 13. The robotic surgical assembly of claim 1, wherein the base portion of the clip is coupled to an instrument drive unit or a slide rail, and the grasping portion of the clip is movable between an approximated position and an unapproximated position relative to the instrument drive unit or the slide rail.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a U.S. National Stage Application filed under 35 U.S.C. § 371(a) of International Patent Application Serial No. PCT/US2018/062707, filed Nov. 28, 2018, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/593,308, filed Dec. 1, 2017, the entire disclosure of which is incorporated by reference herein.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/062707 11/28/2018 WO
Publishing Document Publishing Date Country Kind
WO2019/108567 6/6/2019 WO A
US Referenced Citations (335)
Number Name Date Kind
3528720 Treace Sep 1970 A
3540441 Collins Nov 1970 A
3707964 Patience et al. Jan 1973 A
3747655 Hadtke Jul 1973 A
3777749 Collins Dec 1973 A
3952738 Krzewinski Apr 1976 A
3955569 Krzewinski et al. May 1976 A
4457026 Morris Jul 1984 A
4919112 Siegmund Apr 1990 A
5515868 Mills May 1996 A
5522403 Bark et al. Jun 1996 A
5740699 Ballantyne et al. Apr 1998 A
5860420 Wiedner et al. Jan 1999 A
6105578 Sommers et al. Aug 2000 A
6116741 Paschal Sep 2000 A
6123080 Mohan et al. Sep 2000 A
6132368 Cooper Oct 2000 A
6206903 Ramans Mar 2001 B1
6246200 Blumenkranz et al. Jun 2001 B1
6312435 Wallace et al. Nov 2001 B1
6331181 Tierney et al. Dec 2001 B1
6346072 Cooper Feb 2002 B1
6394998 Wallace et al. May 2002 B1
6424885 Niemeyer et al. Jul 2002 B1
6441577 Blumenkranz et al. Aug 2002 B2
6459926 Nowlin et al. Oct 2002 B1
6491691 Morley et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6493608 Niemeyer Dec 2002 B1
6565554 Niemeyer May 2003 B1
6645196 Nixon et al. Nov 2003 B1
6659939 Moll et al. Dec 2003 B2
6671581 Niemeyer et al. Dec 2003 B2
6676684 Morley et al. Jan 2004 B1
6685698 Morley et al. Feb 2004 B2
6699235 Wallace et al. Mar 2004 B2
6714839 Salisbury, Jr. et al. Mar 2004 B2
6716233 Whitman Apr 2004 B1
6728599 Wang et al. Apr 2004 B2
6746443 Morley et al. Jun 2004 B1
6766204 Niemeyer et al. Jul 2004 B2
6770081 Cooper et al. Aug 2004 B1
6772053 Niemeyer Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6793652 Whitman et al. Sep 2004 B1
6793653 Sanchez et al. Sep 2004 B2
6799065 Niemeyer Sep 2004 B1
6837883 Moll et al. Jan 2005 B2
6839612 Sanchez et al. Jan 2005 B2
6840938 Morley et al. Jan 2005 B1
6843403 Whitman Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6866671 Tierney et al. Mar 2005 B2
6871117 Wang et al. Mar 2005 B2
6879880 Nowlin et al. Apr 2005 B2
6899705 Niemeyer May 2005 B2
6902560 Morley et al. Jun 2005 B1
6923186 Gavette et al. Aug 2005 B2
6936042 Wallace et al. Aug 2005 B2
6951535 Ghodoussi et al. Oct 2005 B2
6974449 Niemeyer Dec 2005 B2
6991627 Madhani et al. Jan 2006 B2
6994708 Manzo Feb 2006 B2
7025064 Wang et al. Apr 2006 B2
7048745 Tierney et al. May 2006 B2
7066926 Wallace et al. Jun 2006 B2
7118582 Wang et al. Oct 2006 B1
7125403 Julian et al. Oct 2006 B2
7155315 Niemeyer et al. Dec 2006 B2
7239940 Wang et al. Jul 2007 B2
7306597 Manzo Dec 2007 B2
7357774 Cooper Apr 2008 B2
7373219 Nowlin et al. May 2008 B2
7379790 Toth et al. May 2008 B2
7386365 Nixon Jun 2008 B2
7391173 Schena Jun 2008 B2
7398707 Morley et al. Jul 2008 B2
7413565 Wang et al. Aug 2008 B2
7453227 Prisco et al. Nov 2008 B2
7524320 Tierney et al. Apr 2009 B2
7574250 Niemeyer Aug 2009 B2
7594912 Cooper et al. Sep 2009 B2
7607440 Coste-Maniere et al. Oct 2009 B2
7666191 Orban, III et al. Feb 2010 B2
7682357 Ghodoussi et al. Mar 2010 B2
7689320 Prisco et al. Mar 2010 B2
7695481 Wang et al. Apr 2010 B2
7695485 Whitman et al. Apr 2010 B2
7699855 Anderson et al. Apr 2010 B2
7713263 Niemeyer May 2010 B2
7725214 Diolaiti May 2010 B2
7727244 Orban, III et al. Jun 2010 B2
7741802 Prisco et al. Jun 2010 B2
7756036 Druke et al. Jul 2010 B2
7757028 Druke et al. Jul 2010 B2
7762825 Burbank et al. Jul 2010 B2
7778733 Nowlin et al. Aug 2010 B2
7803151 Whitman Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7819859 Prisco et al. Oct 2010 B2
7819885 Cooper Oct 2010 B2
7824401 Manzo et al. Nov 2010 B2
7835823 Sillman et al. Nov 2010 B2
7843158 Prisco Nov 2010 B2
7865266 Moll et al. Jan 2011 B2
7865269 Prisco et al. Jan 2011 B2
7886743 Cooper et al. Feb 2011 B2
7899578 Prisco et al. Mar 2011 B2
7907166 Lamprecht et al. Mar 2011 B2
7935130 Williams May 2011 B2
7963913 Devengenzo et al. Jun 2011 B2
7983793 Toth et al. Jul 2011 B2
7992560 Burton et al. Aug 2011 B2
8002767 Sanchez et al. Aug 2011 B2
8004229 Nowlin et al. Aug 2011 B2
8012170 Whitman et al. Sep 2011 B2
8054752 Druke et al. Nov 2011 B2
8062288 Cooper et al. Nov 2011 B2
8079950 Stern et al. Dec 2011 B2
8100133 Mintz et al. Jan 2012 B2
8108072 Zhao et al. Jan 2012 B2
8120301 Goldberg et al. Feb 2012 B2
8142447 Cooper et al. Mar 2012 B2
8147503 Zhao et al. Apr 2012 B2
8151661 Schena et al. Apr 2012 B2
8155479 Hoffman et al. Apr 2012 B2
8182469 Anderson et al. May 2012 B2
8202278 Orban, III et al. Jun 2012 B2
8206406 Orban, III Jun 2012 B2
8210413 Whitman et al. Jul 2012 B2
8216250 Orban, III et al. Jul 2012 B2
8220468 Cooper et al. Jul 2012 B2
8256319 Cooper et al. Sep 2012 B2
8285517 Sillman et al. Oct 2012 B2
8315720 Mohr et al. Nov 2012 B2
8335590 Costa et al. Dec 2012 B2
8347757 Duval Jan 2013 B2
8374723 Zhao et al. Feb 2013 B2
8418073 Mohr et al. Apr 2013 B2
8419717 Diolaiti et al. Apr 2013 B2
8423182 Robinson et al. Apr 2013 B2
8452447 Nixon May 2013 B2
8454585 Whitman Jun 2013 B2
8499992 Whitman et al. Aug 2013 B2
8508173 Goldberg et al. Aug 2013 B2
8528440 Morley et al. Sep 2013 B2
8529582 Devengenzo et al. Sep 2013 B2
8540748 Murphy et al. Sep 2013 B2
8551116 Julian et al. Oct 2013 B2
8562594 Cooper et al. Oct 2013 B2
8594841 Zhao et al. Nov 2013 B2
8597182 Stein et al. Dec 2013 B2
8597280 Cooper et al. Dec 2013 B2
8600551 Itkowitz et al. Dec 2013 B2
8608773 Tierney et al. Dec 2013 B2
8620473 Diolaiti et al. Dec 2013 B2
8624537 Nowlin et al. Jan 2014 B2
8634957 Toth et al. Jan 2014 B2
8638056 Goldberg et al. Jan 2014 B2
8638057 Goldberg et al. Jan 2014 B2
8644988 Prisco et al. Feb 2014 B2
8666544 Moll et al. Mar 2014 B2
8668638 Donhowe et al. Mar 2014 B2
8746252 McGrogan et al. Jun 2014 B2
8749189 Nowlin et al. Jun 2014 B2
8749190 Nowlin et al. Jun 2014 B2
8758352 Cooper et al. Jun 2014 B2
8761930 Nixon Jun 2014 B2
8768516 Diolaiti et al. Jul 2014 B2
8786241 Nowlin et al. Jul 2014 B2
8790243 Cooper et al. Jul 2014 B2
8808164 Hoffman et al. Aug 2014 B2
8813755 Hoffmann Aug 2014 B2
8816628 Nowlin et al. Aug 2014 B2
8821480 Burbank Sep 2014 B2
8823308 Nowlin et al. Sep 2014 B2
8827989 Niemeyer Sep 2014 B2
8828023 Neff et al. Sep 2014 B2
8838270 Druke et al. Sep 2014 B2
8852174 Burbank Oct 2014 B2
8858547 Brogna Oct 2014 B2
8862268 Robinson et al. Oct 2014 B2
8864751 Prisco et al. Oct 2014 B2
8864752 Diolaiti et al. Oct 2014 B2
8903546 Diolaiti et al. Dec 2014 B2
8903549 Itkowitz et al. Dec 2014 B2
8911428 Cooper et al. Dec 2014 B2
8912746 Reid et al. Dec 2014 B2
8944070 Guthart et al. Feb 2015 B2
8989903 Weir et al. Mar 2015 B2
9002518 Manzo et al. Apr 2015 B2
9014856 Manzo et al. Apr 2015 B2
9016540 Whitman et al. Apr 2015 B2
9019345 O Apr 2015 B2
9043027 Durant et al. May 2015 B2
9050120 Swarup et al. Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9068628 Solomon et al. Jun 2015 B2
9078684 Williams Jul 2015 B2
9084623 Gomez et al. Jul 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9096033 Holop et al. Aug 2015 B2
9101381 Burbank et al. Aug 2015 B2
9113877 Whitman et al. Aug 2015 B1
9138284 Krom et al. Sep 2015 B2
9144456 Rosa et al. Sep 2015 B2
9198730 Prisco et al. Dec 2015 B2
9204923 Manzo et al. Dec 2015 B2
9226648 Saadat et al. Jan 2016 B2
9226750 Weir et al. Jan 2016 B2
9226761 Burbank Jan 2016 B2
9232984 Guthart et al. Jan 2016 B2
9241766 Duque et al. Jan 2016 B2
9241767 Prisco et al. Jan 2016 B2
9241769 Larkin et al. Jan 2016 B2
9259275 Burbank Feb 2016 B2
9259277 Rogers et al. Feb 2016 B2
9259281 Griffiths et al. Feb 2016 B2
9259282 Azizian et al. Feb 2016 B2
9261172 Solomon et al. Feb 2016 B2
9265567 Orban, III et al. Feb 2016 B2
9265584 Itkowitz et al. Feb 2016 B2
9283049 Diolaiti et al. Mar 2016 B2
9301811 Goldberg et al. Apr 2016 B2
9314307 Richmond et al. Apr 2016 B2
9317651 Nixon Apr 2016 B2
9345546 Toth et al. May 2016 B2
9393017 Flanagan et al. Jul 2016 B2
9402689 Prisco et al. Aug 2016 B2
9417621 Diolaiti et al. Aug 2016 B2
9424303 Hoffman et al. Aug 2016 B2
9433418 Whitman et al. Sep 2016 B2
9446517 Burns et al. Sep 2016 B2
9452020 Griffiths et al. Sep 2016 B2
9474569 Manzo et al. Oct 2016 B2
9480533 Devengenzo et al. Nov 2016 B2
9503713 Zhao et al. Nov 2016 B2
9550300 Danitz et al. Jan 2017 B2
9554859 Nowlin et al. Jan 2017 B2
9566124 Prisco et al. Feb 2017 B2
9579164 Itkowitz et al. Feb 2017 B2
9585641 Cooper et al. Mar 2017 B2
9615883 Schena et al. Apr 2017 B2
9623563 Nixon Apr 2017 B2
9623902 Griffiths et al. Apr 2017 B2
9629520 Diolaiti Apr 2017 B2
9629680 Winer Apr 2017 B2
9662177 Weir et al. May 2017 B2
9664262 Donlon et al. May 2017 B2
9687312 Dachs, II et al. Jun 2017 B2
9700334 Hinman et al. Jul 2017 B2
9718190 Larkin et al. Aug 2017 B2
9730719 Brisson et al. Aug 2017 B2
9737199 Pistor et al. Aug 2017 B2
9795446 DiMaio et al. Oct 2017 B2
9797484 Solomon et al. Oct 2017 B2
9801690 Larkin et al. Oct 2017 B2
9814530 Weir et al. Nov 2017 B2
9814536 Goldberg et al. Nov 2017 B2
9814537 Itkowitz et al. Nov 2017 B2
9820823 Richmond et al. Nov 2017 B2
9827059 Robinson et al. Nov 2017 B2
9830371 Hoffman et al. Nov 2017 B2
9839481 Blumenkranz et al. Dec 2017 B2
9839487 Dachs, II Dec 2017 B2
9850994 Schena Dec 2017 B2
9855102 Blumenkranz Jan 2018 B2
9855107 Labonville et al. Jan 2018 B2
9872737 Nixon Jan 2018 B2
9877718 Weir et al. Jan 2018 B2
9883920 Blumenkranz Feb 2018 B2
9888974 Niemeyer Feb 2018 B2
9895813 Blumenkranz et al. Feb 2018 B2
9901408 Larkin Feb 2018 B2
9918800 Itkowitz et al. Mar 2018 B2
9943375 Blumenkranz et al. Apr 2018 B2
9948852 Lilagan et al. Apr 2018 B2
9949798 Weir Apr 2018 B2
9949802 Cooper Apr 2018 B2
9952107 Blumenkranz et al. Apr 2018 B2
9956044 Gomez et al. May 2018 B2
9980778 Ohline et al. May 2018 B2
10008017 Itkowitz et al. Jun 2018 B2
10028793 Griffiths et al. Jul 2018 B2
10033308 Chaghajerdi et al. Jul 2018 B2
10034719 Richmond et al. Jul 2018 B2
10052167 Au et al. Aug 2018 B2
10085811 Weir et al. Oct 2018 B2
10092344 Mohr et al. Oct 2018 B2
10123844 Nowlin et al. Nov 2018 B2
10188471 Brisson Jan 2019 B2
10201390 Swarup et al. Feb 2019 B2
10213202 Flanagan et al. Feb 2019 B2
10258416 Mintz et al. Apr 2019 B2
10278782 Jarc et al. May 2019 B2
10278783 Itkowitz et al. May 2019 B2
10282881 Itkowitz et al. May 2019 B2
10335242 Devengenzo et al. Jul 2019 B2
10405934 Prisco et al. Sep 2019 B2
10433922 Itkowitz et al. Oct 2019 B2
10464219 Robinson et al. Nov 2019 B2
10485621 Morrissette et al. Nov 2019 B2
10500004 Hanuschik et al. Dec 2019 B2
10500005 Weir et al. Dec 2019 B2
10500007 Richmond et al. Dec 2019 B2
10507066 DiMaio et al. Dec 2019 B2
10510267 Jarc et al. Dec 2019 B2
10524871 Liao Jan 2020 B2
10548459 Itkowitz et al. Feb 2020 B2
10575909 Robinson et al. Mar 2020 B2
10592529 Hoffman et al. Mar 2020 B2
10595946 Nixon Mar 2020 B2
10881469 Robinson Jan 2021 B2
10881473 Itkowitz et al. Jan 2021 B2
10898188 Burbank Jan 2021 B2
10898189 McDonald, II Jan 2021 B2
10905506 Itkowitz et al. Feb 2021 B2
10912544 Brisson et al. Feb 2021 B2
10912619 Jarc et al. Feb 2021 B2
10918387 Duque et al. Feb 2021 B2
10918449 Solomon et al. Feb 2021 B2
10932873 Griffiths et al. Mar 2021 B2
10932877 Devengenzo et al. Mar 2021 B2
20030106493 Christian et al. Jun 2003 A1
20060161138 Orban et al. Jul 2006 A1
20060199999 Keda et al. Sep 2006 A1
20080065105 Larkin et al. Mar 2008 A1
20090248039 Cooper et al. Oct 2009 A1
20110041995 Adams Feb 2011 A1
20110259347 Zurn Oct 2011 A1
20150047647 Winer Feb 2015 A1
20150096475 Lee et al. Apr 2015 A1
20150374445 Gombert et al. Dec 2015 A1
20170086934 Devengenzo Mar 2017 A1
20200093556 Zemlok et al. Mar 2020 A1
Foreign Referenced Citations (10)
Number Date Country
201440675 Apr 2010 CN
202507720 Oct 2012 CN
2012106440 Jun 2012 JP
20120014275 Feb 2012 KR
20120014275 Feb 2012 KR
101113980 Mar 2012 KR
8501496 Apr 1985 WO
9832391 Jul 1998 WO
2015142824 Sep 2015 WO
2017147350 Aug 2017 WO
Non-Patent Literature Citations (4)
Entry
Chinese First Office Action dated Nov. 16, 2022 corresponding to counterpart Patent Application CN 201880077534.0.
Vertut, Jean and Philippe Coiffet, Teleoperation and Robotics: Evolution and Development, English translation Prentice-Hall, Inc., Inglewood Cliffs, NJ, USA, 1986 (Abstract Only).
International Search Report dated Mar. 20, 2019, corresponding to International Application No. PCT/US2018/062707; 2 pages.
European Search Report dated Jul. 22, 2021, issued in corresponding EP Appln. No. 18883997, 7 pages.
Related Publications (1)
Number Date Country
20200390511 A1 Dec 2020 US
Provisional Applications (1)
Number Date Country
62593308 Dec 2017 US