Drawer glide mechanism

Information

  • Patent Grant
  • 12161222
  • Patent Number
    12,161,222
  • Date Filed
    Wednesday, September 6, 2023
    a year ago
  • Date Issued
    Tuesday, December 10, 2024
    a month ago
Abstract
A drawer glide mechanism can include a first elongate guide member, a second elongate glide member, a ball bearing component, and a v-notch socket. The first elongate guide member includes a distal end that is configured to fit within an opening in the v-notch socket. The drawer glide mechanism can further include one or more floating members and fixed members.
Description
BACKGROUND OF THE INVENTIONS
Field of the Inventions

The present application relates generally to drawer glide mechanisms.


Description of the Related Art

Drawer glide mechanisms are commonly used to facilitate the opening and closing of drawers. Drawer glide mechanisms generally include a plurality of elongate guide members that slide relative to one another. The elongate guide members are often metal or plastic pieces mounted, for example, to the sides of drawers, and/or within a storage device (e.g. cabinetry).


Some common drawer glide mechanisms are referred to as epoxy glides. These types of drawer glide mechanisms are low cost, and include a single roller (e.g. wheel) on both ends of the glide mechanism. The rollers are used to allow a drawer to slide in and out of a piece of cabinetry along the guide members. The epoxy glides can be mounted to the back of a cabinetry, for example, using a single piece v-notch socket. The v-notch socket, which is generally a single plastic piece mounted to the back of a cabinetry, can receive one end of a guide member to help hold the guide member in place.


Other types of drawer glide mechanisms incorporate ball bearing guide members that allow a drawer to slide in and out in a more smooth manner. These drawer glide mechanisms often require an expensive, larger, thicker, and/or heavier two-piece socket with multiple screws or other fasteners to fasten the two-piece socket in place to the back of a storage unit. These drawer glide mechanisms are used for example in industrial settings and for high-end cabinetry where there are tight dimensional tolerances.


SUMMARY OF THE INVENTION

An aspect of at least one of the embodiments disclosed herein includes the realization that epoxy glides can often create rough, uneven drawer movement within a piece of cabinetry, due to the single rollers, loose fit of the guides, and the size/weight of a cabinet drawer.


Another aspect of at least one of the embodiments disclosed herein includes the realization that due to the high cost and labor involved with the two-piece socket and ball bearing guide, and the lack of tight tolerances often found in kitchen and bathroom cabinetry, a typical ball bearing drawer glide mechanism is not ideal for use in mass production of kitchen/bathroom cabinetry.


Therefore, it would be advantageous to have a drawer glide mechanism for kitchens/bathroom cabinetry that utilizes the advantage of ball bearing guides for smooth operation of the drawer, and also utilizes the advantage of a v-notch type socket for cost-efficiency.


Thus, in accordance with at least one embodiment described herein, a drawer glide mechanism can comprise a first elongate guide member having a distal end, a second elongate guide member nested within the first elongate guide member, a ball bearing component comprising a plurality of ball bearings between the first and second elongate guide members configured to permit movement of the second elongate guide member relative the first elongate guide member, and a v-notch socket having at least a first opening for receiving the distal end of the first elongate guide member.


Another aspect of at least one of the embodiments disclosed herein includes the realization that wood and/or other types of drawers often are warped or are otherwise misshapen and uneven. When installing a warped drawer into a cabinet, it can be difficult to properly align and install the drawer, particularly when the drawer is intended to be attached directly to one or more drawer glides.


Therefore, it would be advantageous to have a drawer glide mechanism for kitchens/bathroom cabinetry that utilizes an attachment structure that compensates for warping of drawers, and facilitates easy attachment and adjustment of the drawer within the cabinetry.


Thus, in accordance with at least one embodiment disclosed herein, a drawer glide mechanism can comprise a first elongate guide member having a distal end, a second elongate guide member nested within the first elongate guide member, the second elongate guide member having a longitudinally extending body, a fixed member protruding from and extending generally transverse to the longitudinally extending body, and a floating member extending at least partially over the fixed member, the floating member configured to slide over the first fixed member in a transverse direction relative the longitudinally extending body.


In accordance with at least another embodiment disclosed herein, a drawer system can comprise a drawer cabinet comprising a back side panel, two side panels, and a plurality of face frame components, two drawer glide mechanisms, each of the drawer glide mechanisms attached to the back side panel and comprising a first elongate guide member having a longitudinally extending body and a distal end, a second elongate guide member nested within the first elongate guide member, the second elongate guide member having a longitudinally extending body, at least one fixed member protruding from and extending generally transverse to the longitudinally extending body of the second elongate guide member, at least one floating member extending at least partially over the fixed member, the floating member configured to slide over the first fixed member in a transverse direction relative the longitudinally extending body of the second elongate guide member, a ball bearing component comprising a plurality of ball bearings between the first and second elongate guide members configured to permit longitudinal movement of the second elongate guide member relative to the first elongate guide member, a socket having a body portion, at least a first opening in the body portion, and at least one dowel portion protruding from a back side of the body portion and into the back side panel of the drawer cabinet, the socket configured to receive the distal end of the first elongate guide member, and a drawer comprising a back drawer panel, two side drawer panels, and a front drawer panel, the drawer attached to the second elongate guide member via the at least one floating member.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present embodiments will become more apparent upon reading the following detailed description and with reference to the accompanying drawings of the embodiments, in which:



FIG. 1 is a perspective view of an embodiment of a drawer glide mechanism;



FIG. 2 is a left side elevational view of the drawer glide mechanism of FIG. 1;



FIG. 3 is a bottom plan view of the drawer glide mechanism of FIG. 1;



FIG. 4 is a top plan view of the drawer glide mechanism of FIG. 1;



FIGS. 5-9 are views of a v-notch socket of the drawer glide mechanism of FIG. 8;



FIGS. 10 and 11 are perspective view of a first elongate guide member of the drawer glide mechanism of FIG. 1;



FIG. 12 is a perspective view of a ball bearing component of the drawer glide mechanism of FIG. 1;



FIG. 12A is a perspective view of the cross-section taken along line A-A in FIG. 1;



FIG. 13 is a perspective view of a second elongate guide member of the drawer glide mechanism of FIG. 1, illustrating a plurality of fixed and floating members attached thereto;



FIG. 14 is a perspective view of the second elongate guide member of the drawer glide mechanism of FIG. 1, illustrating removal of the floating members, with the fixed members remaining;



FIG. 15 is a perspective view of the second elongate guide member of the drawer glide mechanism of FIG. 1, illustrating removal of both the fixed and floating members;



FIG. 16A is a front view of one of the floating members;



FIG. 16B is a cross-sectional view of the floating member of FIG. 16A;



FIG. 16C is a bottom plan view of the floating member of FIG. 16A;



FIG. 17 is a perspective view of one of the fixed members;



FIGS. 17A and 17B are cross-sectional views illustrating two different positions of one of the fixed and floating members;



FIG. 18 is a partial perspective view of the drawer glide mechanism of FIG. 1, illustrating an embossed portion on a distal end of the first elongate guide member;



FIG. 19 is a top plan view of an embodiment of a drawer cabinet system including the drawer glide mechanism of FIG. 1; and



FIG. 20 is a perspective view of the drawer cabinet system of FIG. 19.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

With reference to FIGS. 1-4, a drawer glide mechanism 10 can comprise a v-notch socket 12, a first elongate guide member 14, a ball bearing component 16, and a second elongate guide member 18. The first elongate guide member 14 and second elongate member 18 can comprise elongate pieces of metal, plastic, or other suitable material. The first elongate guide member 14 can be coupled (e.g. releasably coupled) to the v-notch socket 12, and/or can also be coupled to the second elongate guide member 18. For example, the second elongate guide member 18 can be nested within the first elongate guide member 14. The ball bearing component 16 can be nested between the first elongate guide member 14 and second elongate guide member 18. The second elongate guide member 18 can be free to move (e.g. glide) relative to the first elongate guide member 14 in at least one direction via the ball bearing component 16. For example, the second elongate guide member 18 can glide alongside a length the first elongate guide member 14, generally parallel to the first elongate guide member 14. Other arrangements of the first elongate guide member 14 and second elongate guide member 18 are also possible. For example, in some embodiments the first elongate guide member 14 can be nested within the second elongate guide member 18. In some embodiments one or more of the elongate guide members 14, 18 can be telescopingly engaged with one another. In some embodiments more than two elongate guide members can be used. In some embodiments more than one ball bearing component 16 can be used.


With reference to FIGS. 5-9, the v-notch socket 12 can comprise a body portion 20, a first opening 22, a second opening 24, and at least one protruding v-notch dowel portion 26. The body portion 20 can be comprised of plastic, or other suitable material. The first opening 22 can, for example, be cut out of, or molded as part of, the body 20. The first opening 22 can be located on a front-facing portion of the v-notch socket 12. The first opening 22 can be large enough to receive a distal end of the first elongate guide member 14. The second opening 24 can, for example, be cut out of or molded as part of, the body 20. The second opening 24 can be located on a side-facing portion of the v-notch socket 12. The second opening 24 can be large enough to receive at least a portion of the distal end of the first elongate guide member 14. In some embodiments, the first and second openings 22, 24 can be continuous, and linked together, such that they form one opening and pathway through the body of the v-notch socket 12.


With continued reference to FIGS. 5-9, the at least one v-notch dowel portion 26 can comprise, for example, a plastic dowel piece that is integrally formed with (e.g. molded with) the body portion 20. The v-notch dowel portion 26 can extend from a back-facing portion of the v-notch socket 12. The v-notch dowel portion 26 can extend from the body 20 on an opposite side of the body 20 as the first opening 22. In some embodiments, the v-notch socket 12 can have two v-notch dowel portions 26, though other numbers are also possible. The v-notch dowel portions 26 can be configured to be inserted into the back side paneling of a drawer cabinet. Specifically, the v-notch dowel portions 26 can be configured to be inserted into a relatively thin back side drawer panel. For example, in some embodiments, the v-notch dowel portions 26 can be configured to be inserted into a thin back side drawer panel that is no greater than 5 mm in thickness. In some embodiments the v-notch dowel portions 26 can be configured to be inserted into a back side drawer panel that is no greater than 4 mm in thickness. In some embodiments the v-notch dowel portions 26 can be configured to be inserted into a back side drawer panel that is no greater than 3 mm in thickness. In some embodiments the v-notch dowel portions 26 can be configured to be inserted into a back side drawer panel that is no greater than 2 mm in thickness. Other ranges and values are also possible. Thus, at least in some embodiments, plastic v-notch dowel portions 26 and a plastic v-notch socket 12 can facilitate holding an attached metal first elongate guide member 14, metal ball bearing component 16, and metal second elongate guide member 18 in place within a drawer cabinet, even if the drawer cabinet has relatively thin paneling. With reference to FIG. 9, in some embodiments the v-notch socket 12 can include one or more tabs 27. The tabs 27 can be used to help guide a distal end of the first elongate guide member 14. The tabs 27 can be used to help generally hold (e.g. frictionally) a distal end of the first elongate guide member 14 in place and inhibit or prevent movement of the distal end of the first elongate guide member 14 relative the v-notch socket 12 in at least one direction.


With reference to FIGS. 10 and 11, the first elongate guide member 14 can comprise a web portion 28, a first flange portion 30 extending from the web portion 28, and a second flange portion 32 extending from the web portion 28. The web portion 28, first flange portion 30, and second flange portion 32 can form a generally U-shaped profile. Other configurations and shapes for the first elongate guide member 14 are also possible. The first elongate guide member 14 can also comprise a stop member 34. The stop member 34 can comprise a piece of plastic, rubber, or other material, configured to limit relative motion between the first elongate guide member 14 and second elongate guide member 18. The stop member 34 can be located generally at a distal end of the first elongate guide member 14, though other locations are also possible.


With continued reference to FIGS. 10 and 11, the first elongate guide member 14 can further comprise a sidewall attachment mechanism 36. The sidewall attachment mechanism 36 can comprise, for example, a plastic dowel that is rigidly affixed to one side of the first elongate guide member 14. The sidewall attachment mechanism 36 can be used, for example, to attach the first elongate guide member 14 to a face frame component or the inside side paneling of a drawer cabinet. Thus, in some embodiments, both the v-notch dowel portions 26 described above, as well as the sidewall attachment mechanism 36, can be used to help attach and/or generally fix the position and/or orientation of the first elongate guide mechanism 36 within a drawer cabinet.


With continued reference to FIGS. 10 and 11, the first elongate guide member 14 can comprise a distal end 38 that is bent relative to the generally longitudinally extending remaining portion of the first elongate guide member 14. For example, the distal end 38 can be bent at a generally 90 degree angle relative to the rest of the elongate guide member 14. The distal end 38 can be bent, for example, inwardly such that it will extend directly behind a drawer when the drawer is attached to the elongate guide members 14, 18. In some embodiments the distal end 38 can have a generally fork-shaped configuration, such that the distal end has both a first forked member 40 and a second forked member 42. In some embodiments the forked-shaped configuration can facilitate attachment of the distal end 38 into the first opening 22 of the v-notch socket 12 described above.


With reference to FIG. 12, and as described above, the drawer glide mechanism 10 can comprise a ball bearing component 16 (e.g. what is commonly referred to as a race). The ball bearing component 16 can comprise a plurality of ball bearing rollers 44. The ball bearing rollers 44 can be spaced apart from one another and located along opposing sides of the ball bearing component 16. The ball bearing component 16 can be nested between the first elongate guide member 14 and second elongate guide member 18 so as to facilitate a smooth gliding motion between the first elongate guide member 14 and second elongate guide member 18.


With reference to FIGS. 12A-15, the second elongate guide member 18 can comprise a web portion 46, a first flange portion 48 extending from web portion 46, and a second flange portion 50 extending from web portion 46. The web portion 46, first flange portion 48, and second flange portion 50 can form a generally U-shaped profile. Other configurations and shapes for the second elongate guide member 18 are also possible.


As illustrated in FIG. 12A, the drawer glide mechanism 10 can optimally and advantageously include components that are nested and captured within one another, so as to severely restrict or entirely prohibit relative movement of components. For example, as illustrated in FIG. 12A, the first elongate guide member 14 can include the web portion 28 and first and second flange portions 30, 32. In some embodiments the first flange portion 30 can be shaped so as to curve over one set of the ball bearings 44 along the ball bearing component 16. Similarly, the second flange portion 32 can be shaped so as to curve over the other, opposite set of ball bearings 44 along the ball bearing component 16. Additionally, the second elongate guide member 18 can include the web portion 46 and first and second flange portions 48, 50. In some embodiments the first flange portion 48 can be shaped so as to curve over one set of ball bearings 44 along the ball bearing component 16. Similarly, the second flange portion 50 can be shaped so as to curve over the other, opposite set of ball bearings 44 along the ball bearing component 16. This curvature of the first flange portions 30, 48, and the second flange portions 32, 50 effectively captures the second elongate guide member 18 within the ball bearing component 16, and captures the ball bearing component 16 within the first elongate guide member 14. The overall capturing of these components severely restricts or entirely prohibits the second elongate guide member 18 from moving away from the first elongate guide member 14 in any direction other than along a path parallel to the second elongate guide member provided by the ball bearing component 16. Thus, the only relative movement of the first elongate guide member 14 and second elongate guide member 18 that is allowed is the relative sliding of the guide members 14, 18 along parallel paths. This arrangement advantageously provides for smooth operation.


With reference to FIGS. 13-15, the second elongate guide member 18 can also comprise at least one slot 52. The slot 52 can be located, for example, along a distal end of the second elongate guide member 18. The slot 52 can be used to allow for adjustability of an attached drawer. For example, the vertical slot 52 can allow for vertical adjustment of a drawer that is attached to the second elongate guide member 18. In some embodiments a fastener or other device can be inserted through the slot 52. Because of the size and shape of the slot 52, the fastener or other device can slide vertically up and down within the slot 52, thus allowing relative movement of the drawer to the second elongate guide member 18.


With reference to FIGS. 13-17, the drawer glide mechanism 10 can also comprise one or more structures that are adjustable to compensate for variations in drawer size, shape, and/or warping. For example, the drawer glide mechanism 10 can comprise at least one floating member 54, and at least one fixed member 56. The floating member 54 can be configured to attach directly to the side of a drawer, as well as to be attached, in a floating manner, to the fixed member 56. The fixed member 56 can be rigidly attached to, or integrally formed with, one or more of the first elongate guide member 14 and second elongate guide member 18. For example, a plurality of floating members 54 can comprise plastic dowels, and a plurality of fixed members 56 can comprise metal pins. The fixed members 56 can be attached to (e.g. welded to) locations 58 along the second elongate guide member 18, as seen in FIG. 15. The fixed members 56 can be spaced apart longitudinally along a length of the second elongate guide member 18. In some embodiments, more than two fixed members 56 can be used.


With reference to FIGS. 16A-C, in some embodiments the floating member 54 can comprise a first end 60, a second end 62, and a plurality of ridges 64 between the first end 60 and second end 62. The ridges 64 can be used to facilitate attachment of the floating member 54 to the side paneling of a drawer. The floating members 54 can be configured to be inserted into the side paneling of a drawer. Specifically, the floating members 54 can be configured to be inserted into a relatively thin side panel of a drawer. For example, in some embodiments, the floating members 54 can be configured to be inserted into a thin side paneling of a drawer that is no greater than 5 mm in thickness. In some embodiments the floating members 54 can be configured to be inserted into the side paneling of a drawer that is no greater than 4 mm in thickness. In some embodiments the floating members 54 can be configured to be inserted into the side paneling of a drawer that is no greater than 3 mm in thickness. In some embodiments the floating members 54 can be configured to be inserted into the side paneling of a drawer that is no greater than 2 mm in thickness. Other ranges and values are also possible.


In some embodiments the floating member 54 can have an overall length “L1” of no greater than 12 mm. In some embodiments the floating member 54 can have an overall length “L1” of no greater than 10 mm. In some embodiments the floating member 54 can have an overall length “L1” of no greater than 8 mm. Other ranges and values are also possible.


With reference to FIGS. 16B, 17A, and 17B, the floating member 54 can include at least one opening 66. In some embodiments the opening 66 can extend entirely through the floating member 54. For example, the opening 66 can extend from the first end 60 through to the second end 62. The opening 66 can be shaped and/or sized to accommodate one of the fixed members 56. For example, and as illustrated in FIG. 16B, the opening 66 can have a first diameter D1 near the first end 60 and a second, smaller diameter D2 near the second end 62. The two diameters D1, D2 can form ledges 67 within the floating member 54. The opening 66 can also have a length “H” where the opening 66 includes the first diameter D1.


As illustrated in FIG. 17, the fixed member 56 can comprise a first portion 68, a second portion 70, and a third portion 72. In some embodiments the fixed member 56 can have an overall length “L2” of no greater than 12 mm. In some embodiments the fixed member 56 can have an overall length “L2” of no greater than 10 mm. In some embodiments the fixed member 56 can have an overall length “L2” of no greater than 8 mm. Other ranges and values are also possible. In some embodiments the third portion 72 can be attached (e.g. via welding) to the locations 58 shown in FIG. 15. In some embodiments the first portion 68 can have a diameter D3. The diameter D3 can be larger than that of D2, but no greater than that of D1. The first portion 68 can also comprise a length “T”. In some embodiments the length “T” can be smaller than the length “H.”


With reference to FIGS. 16B, 17, 17A, and 17B, when the fixed member 56 is positioned within the floating member 54, the first portion 68 can sit within the portion of the opening 66 having the length “H.” Because the diameter D3 of the first portion 68 of fixed member 56 is larger than the diameter D2 of the opening 66, the ledges 67 can work to prevent the floating member 54 from moving relative to the fixed member 56 past a fixed point. Thus, the floating member 54 can be limited in its movement in at least one direction (e.g. away from the second elongate guide member 18) due to the ledges 67. The floating member 54 can also be limited in its movement in a second direction (e.g. towards the second elongate guide member 18) by the floating member 54 contacting the first elongate guide member 14. The arrows in FIG. 13 illustrate available directions of movement of the floating members 54.


With reference to FIGS. 16B, 17, 17A, and 17B, because the length “H” of the opening 66 in the floating member 54 is larger than the length “T” of the first portion 68 of the fixed member 56, it is possible for the floating member 54 to slide relative to the fixed member 56 without the first portion 68 of the fixed member 56 ever extending out of the floating member 54. In some embodiments, for example, the ratio of the length “H” to the length “T” can be between approximately 1.0 and 1.5. In some embodiments the ratio of the length “H” to the length “T” can be between approximately 1.0 and 2.0. In some embodiments the ratio of the length “H” to the length “T” can be between approximately 1.0 and 3.0. Other values and ranges are also possible.


As illustrated by the arrows in FIGS. 13, 17A, and 17B, the movement of the floating member 54 can be generally transverse to the second elongate member 18. This movement permits adjustability and compensation for drawer warping along the side of the drawer. For example, and as described above, often times a drawer will be slightly warped and/or otherwise misshaped. When installing the drawer, the floating members 54 can be inserted into the side paneling of the drawer. Because one end of the drawer may be sticking out farther than another due to warping, the floating members 54 may end up moving out to different lengths along the arrow directions in FIG. 13. This allows the drawer to easily be attached to the second elongate guide member 18. Additionally, the use of floating members 54 and fixed members 56 allows for self-correction and self-adjustment of the drawer and drawer glide mechanism 10. Thus, the floating members 54 do not require additional mechanical adjustments once the drawer is installed. Rather, the very nature of the floating members 54 described above permits automatic self-adjustment, since the floating member 54 will slide over the fixed members 56 as needed to compensate for any warping in the drawer.


With reference to FIG. 18, the drawer glide mechanism 10 can also comprise at least one embossed portion 74 for spacing purposes when installing the drawer glide mechanism 10 within a drawer cabinet. For example, the drawer glide mechanism 10 can comprise an embossed portion 74 located generally at a distal end of the first elongate guide member 14. The embossed portion 74 can comprise a raised piece of metal along the first elongate guide member 14. The embossed portion 74 can act as a spacer within the interior of a drawer cabinet. For example, the embossed portion 74 can create a spacing between the first elongate guide member 14 and a face frame component or an inside side paneling of a drawer cabinet. This spacing can facilitate installation of the drawer glide mechanism 10, and help to prevent unwanted friction or contact between various components of the drawer glide mechanism 10, drawer, and/or drawer cabinet.


With reference to FIGS. 19 and 20, an embodiment of a drawer system 110 can include two drawer glide mechanisms 10, a drawer cabinet 78, and a drawer 80. The drawer cabinet 78 can include a back side panel 82 and at least two sidewall panels 84, 86. The two drawer glide mechanisms 10 can be attached to the back side panel 82. For example, and as described above, the drawer glide mechanisms 10 can include dowel portions 26 that are configured to extend into the back side panel 82. The dowel portions 26 can hold the v-notch sockets 12 in place. In embodiments where the drawer cabinet 110 is a face frame cabinet, the drawer cabinet 78 can also include one or more face frame components. For example, and as illustrated in FIGS. 19 and 20, the drawer cabinet 78 can include face frame components 88, 90, and 92. The face frame components 88, 90, 92 can provide a framework within which one or more drawers or cabinet doors can be fitted. Additionally, the face frame components 88 and 90 can be used to anchor the first elongate guide member 14. For example, and with reference to FIGS. 18 and 20, the sidewall attachment mechanisms 36 described above can be inserted into the face frame components 88 and 90. The sidewall attachment mechanisms 36 can be inserted such that the face frame components 88 and 90 are generally flush with the embossed portion 74 of the first elongate guide member 14.


With continued reference to FIGS. 19 and 20, the drawer 80 can include a back drawer panel 94, two side drawer panels 96, 98, and a front drawer panel 100. The drawer glide mechanisms 10 can be attached to the drawer 80 via the floating members 54 and fixed members 56 described above. For example, and with reference to FIG. 20, the floating members 54 can be inserted into the side drawer panels 96, 98. The floating members 54 and fixed members 56 can accommodate for any warped portions of the side drawer panels 96, 98. As illustrated in FIG. 19, the drawer glide mechanisms 10 can permit the drawer 80 to be moved in and out of the drawer cabinet 78. When the drawer 80 is moved into the drawer cabinet 78, the front drawer panel 100 can rest against portions of the face frame components 88, 90.


While the embodiment of the drawer system 110 illustrated in FIGS. 19 and 20 is shown having drawer glide mechanisms 10 that are used in a face frame drawer cabinet 78, the drawer glide mechanisms 10 can also be used in frameless cabinets. For example, the drawer glide mechanisms 10 can be attached to the back side paneling of a frameless drawer cabinet with the v-notch socket 12, as well as to one or more side panels or other structures within a frameless cabinet. Thus, the drawer glide mechanism 10 can be used in a variety of settings within different types of kitchen and bathroom cabinets to facilitate drawer installation and movement.


Overall, the drawer glide mechanism 10 advantageously combines the low cost of an epoxy glide with the high performance of a ball bearing glide. This enables ease of manufacturing and assembly, labor and time savings, cost reduction, and results in drawers that operate and move smoothly within kitchen or bathroom cabinetry.


For example, and as described above, epoxy glides are low cost, and include a single roller (e.g. wheel) on both ends of the glide mechanism. The rollers are used to allow the drawer to slide in and out of a piece of cabinetry along the guide members. The epoxy guides do not utilize capturing of components to severely restrict or entirely prohibit relative movement of components. Rather, the guides of an epoxy glide are set loosely within one another such that one guide member can unintentionally move relative the other during the operation, often resulting in uneven and wobbly drawer movement. Epoxy glides include an inner guide member and an outer guide member. The inner guide member can sit at least in part within the outer guide member, such that the roller on each guide member contacts the other opposing guide member. However, in this arrangement it is possible for the inner guide member to fall off of or slip away from an outer guide member in at least one direction, causing the rollers to lose at least partial contact with the guide members, and for the drawer movement to become unstable and non-linear.


The ball bearing guides, on the other hand, are often bulky, expensive, and require two-piece sockets and/or additional fasteners (e.g. bolts) to support them within a storage compartment. These guides are often designed for use in industrial settings, such as for storage of computer components. They are also designed and used for high end cabinetry, where the walls of the cabinet are much thicker than common kitchen and bathroom cabinetry, and where the dimensional tolerances in designing and manufacturing the cabinetry are more precise.


In common kitchens and bathrooms, where the tolerances of the cabinetry are not as precise, and where there are often misshapen, slightly warped, and/or different sized cabinets, it would be advantageous to have drawer glides that utilize the more smooth, linear operation of a ball bearing guide, yet are still light-weight, low cost, and can function within a cabinet that does not have the thick paneling and precise tolerances found in the cabinetry described above. Thus, it would be advantageous to have drawer glides that have tight capture, as described above, such that the elongate guides 14, 18 do not fall of or slip away from one another as occurs with epoxy glides, and also advantageous to have drawer glides that can be installed in cabinets with relatively low dimensional tolerances and thin paneling.


The drawer glide mechanism 10 described above can accomplish these goals by utilizing, for example, an inexpensive, single plastic socket piece, such as v-notch socket 12, with relatively thin metal guide members 14, 18, and a metal ball bearing component 16. The drawer glide mechanism 10 described above is both light-weight and low cost, can be used interchangeably with common v-notch sockets typically used in kitchen bathrooms and cabinets, and affords the consistently smooth and well-structured movement that is desired.


Additionally, while the drawer glide mechanism 10 can be made to have a smooth operation and have tight tolerances, the drawer glide 10 can also advantageously include one or more components to facilitate adjustment of the guide members 14, 18 and/or of an attached drawer. For example, and as described above, the drawer glide mechanism 10 can include one or more floating and fixed members, slots, and/or embossing. These components can aid in the installation and proper adjustment of a drawer within a kitchen or bathroom cabinet. Additionally, or alternatively, the drawer glide mechanism 10 can include a v-notch socket 12 that has opening(s) such as a first opening and second opening 22, 24 that facilitate relative movement of the first elongate guide member 12 with the drawer cabinet itself (e.g. to the back wall panel 82 of the drawer cabinet 78). Advantageously, these adjustments can be self-adjusting. Thus, no additional equipment, fasteners, and/or any type of further mechanical adjustment is required by an operator once the drawer has initially been installed.


While the above embodiments are described in the context of a kitchen or bathroom cabinet, the embodiments described above can be used in other environments as well, including but not limited to other areas of a home, in commercial settings such as offices, warehouses, etc. Additionally, while the embodiment of the drawer glide mechanism 10 described above and illustrated in FIGS. 1-18 includes a v-notch socket 12, a first elongate guide member 14, a ball bearing component 16, a second elongate guide member 18, two floating members 54, two fixed members 56, a slot 52, and an embossed portion 74, other combinations and numbers of components can also be used. For example, in some embodiments a drawer glide mechanism can include a v-notch socket 12, a first elongate guide member 14, a ball bearing component 16, a second elongate guide member 18, three floating members 54, three fixed members 56, and an embossed portion 74. In some embodiments a drawer glide mechanism can include a v-notch socket 12, a first elongate guide member 14, a ball bearing component 16, a second elongate guide member 18, two floating members 54, and two fixed members 56. In some embodiments a drawer glide mechanism can include a v-notch socket 12, a first elongate guide member 14, a ball bearing component 16, and a second elongate guide member 18. In some embodiments a drawer glide mechanism can include a v-notch socket 12, a first elongate guide member 14, a ball bearing component 16, a second elongate guide member 18, two floating members 54, two fixed members 56, and a slot 52. Various other combinations are also possible.


Furthermore, in some embodiments the drawer glide mechanism can comprise for example a common epoxy glide, without a ball bearing component, but can include one or more floating members 54, fixed members 56, slots 52, and/or embossed portions 74. Thus, the floating and fixed members 54, 56, as well as other features described above including but not limited to the slot 52 and embossed portion 74, can be used not only on a ball bearing glide like drawer glide mechanism 10 described above, but on any type of glide mechanism.


Although these inventions have been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and obvious modifications and equivalents thereof. In addition, while several variations of the inventions have been shown and described in detail, other modifications, which are within the scope of these inventions, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments can be made and still fall within the scope of the inventions. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of at least some of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above.

Claims
  • 1. A drawer glide mechanism comprising: a first elongate guide member configured to be secured to a cabinet, the first elongate guide member comprising: a first end and a second end;a web;a first flange extending from the web;a second flange extending from the web and spaced from the first flange; anda sidewall attachment mechanism arranged at the first end and configured to be secured to a sidewall of the cabinet, the sidewall attachment mechanism comprising a plastic dowel;a second elongate guide member configured to be secured to a drawer, the second elongate guide member comprising: a first end and a second end;a web;a first flange extending from the web of the second elongate guide member;a second flange extending from the web of the second elongate guide member and spaced from the first flange of the second elongate guide member; andat least one drawer attachment mechanism configured to be secured to the drawer, the at least one drawer attachment mechanism comprising a plastic dowel;a ball bearing component configured to facilitate movement of the second elongate guide member relative to the first elongated guide member in a first direction and a second direction that is opposite the first direction, wherein the ball bearing component comprises a first plurality of ball bearing rollers positioned between the first flange of the first elongate guide member and the first flange of the second elongate guide member and a second plurality of ball bearing rollers positioned between the second flange of the first elongate guide member and the second flange of the second elongate guide member;a stop member extending outward from the web of the first elongate guide member and spaced from the first and second flanges of the first elongate guide member, the stop member configured to limit movement of the second elongate guide member relative to the first elongate guide member in the second direction, wherein the stop member is positioned closer to the second end of the first elongate guide member than to the first end of the first elongate guide member;a socket connected to the second end of the first elongate guide member and configured to connect the first elongate guide member to a back wall of the cabinet; andan embossed portion arranged at the first end of the first elongate guide member, the embossed portion comprising a first portion extending outward from and non-parallel relative to the web of the first elongate guide member and a second portion extending outward from said first portion that is parallel to and spaced from the web of the first elongate guide member, wherein the sidewall attachment mechanism of the first elongate guide member extends outward from the second portion of the embossed portion, and wherein the embossed portion is configured to space the first elongate guide member from the cabinet, thereby inhibiting at least one of the drawer and the second elongate guide member from contacting the cabinet when the second elongate guide member is connected to the drawer and the second elongate guide member is moved relative to the first elongate guide member.
  • 2. The drawer glide mechanism of claim 1, wherein the web, the first flange, and the second flange of each of the first and second elongate guide members form a U-shaped profile.
  • 3. The drawer glide mechanism of claim 1, wherein the sidewall attachment mechanism is rigidly affixed to the second portion of the embossed portion.
  • 4. The drawer glide mechanism of claim 1, wherein the stop member comprises rubber.
  • 5. The drawer glide mechanism of claim 1, wherein the web of the first elongate guide member comprises a first side and a second side, and wherein the first portion of the embossed portion extends outward from the first side and the stop member extends outward from the second side.
  • 6. The drawer glide mechanism of claim 1, wherein the embossed portion is integral with the first elongate guide member.
  • 7. The drawer glide mechanism of claim 1, wherein the sidewall attachment mechanism extends perpendicularly from a plane of the second portion of the embossed portion.
  • 8. A drawer glide mechanism comprising: a first elongate guide member configured to be secured to a cabinet, the first elongate guide member comprising: a first end and a second end;a web;a first flange extending from the web;a second flange extending from the web and spaced from the first flange; anda cabinet attachment mechanism arranged at the first end and configured to be secured to a portion of the cabinet;a second elongate guide member configured to be secured to a drawer, the second elongate guide member comprising: a first end and a second end;a web;a first flange extending from the web of the second elongate guide member;a second flange extending from the web of the second elongate guide member and spaced from the first flange of the second elongate guide member; andat least one drawer attachment mechanism configured to be secured to the drawer;a ball bearing component configured to facilitate movement of the second elongate guide member relative to the first elongated guide member;a socket connected to the second end of the first elongate guide member and configured to connect the first elongate guide member to a back wall of the cabinet; andan embossed portion arranged at the first end of the first elongate guide member, the embossed portion comprising a first portion extending outward from and non-parallel relative to the web of the first elongate guide member and a second portion extending outward from said first portion that is parallel to and spaced from the web of the first elongate guide member, wherein the cabinet attachment mechanism of the first elongate guide member extends outward from the second portion of the embossed portion, and wherein the embossed portion is configured to space the first elongate guide member from the cabinet, thereby inhibiting at least one of the drawer and the second elongate guide member from contacting the cabinet when the second elongate guide member is connected to the drawer and the second elongate guide member is moved relative to the first elongate guide member.
  • 9. The drawer glide mechanism of claim 8, wherein the cabinet attachment mechanism is rigidly affixed to the second portion of the embossed portion.
  • 10. The drawer glide mechanism of claim 8, wherein the embossed portion is integral with the first elongate guide member.
  • 11. The drawer glide mechanism of claim 8, wherein the cabinet attachment mechanism extends perpendicularly from a plane of the second portion of the embossed portion.
  • 12. The drawer glide mechanism of claim 8, further comprising a stop member extending outward from the web of the first elongate guide member and spaced from the first and second flanges of the first elongate guide member, the stop member configured to limit movement of the second elongate guide member relative to the first elongate guide member, wherein the stop member is positioned closer to the second end of the first elongate guide member than to the first end of the first elongate guide member.
  • 13. The drawer glide mechanism of claim 12, wherein the stop member comprises rubber.
  • 14. The drawer glide mechanism of claim 12, wherein the web of the first elongate guide member comprises a first side and a second side, and wherein the first portion of the embossed portion extends outward from the first side and the stop member extends outward from the second side.
  • 15. The drawer glide mechanism of claim 12, wherein each of the cabinet attachment mechanism and the at least one drawer attachment mechanism comprises a plastic dowel.
  • 16. A drawer glide mechanism comprising: a first elongate guide member comprising a cabinet attachment mechanism configured to be secured to a portion of a cabinet;a second elongate guide member movably connected to the first elongate guide member and comprising at least one drawer attachment mechanism configured to be secured to a drawer; andan embossed portion arranged on a portion of the first elongate guide member, the embossed portion comprising a first portion extending outward from the portion of the first elongate guide member and a second portion extending outward from said first portion that is spaced from the first elongate guide member, wherein the cabinet attachment mechanism of the first elongate guide member extends outward from the second portion of the embossed portion, and wherein the embossed portion is configured to space the first elongate guide member from the cabinet, thereby inhibiting at least one of the drawer and the second elongate guide member from contacting the cabinet when the second elongate guide member is connected to the drawer and the second elongate guide member is moved relative to the first elongate guide member.
  • 17. The drawer glide mechanism of claim 16, wherein the first elongate guide member further comprises a web, a first flange extending from the web, and a second flange extending from the web, and wherein the first portion of the embossed portion extends outward from the web of the first elongate guide member.
  • 18. The drawer glide mechanism of claim 17, wherein the second portion of the embossed portion is parallel to the web of the first elongate guide member.
  • 19. The drawer glide mechanism of claim 16, wherein: the first elongate guide member further comprises a first end and a second end;the drawer glide mechanism further comprises a socket connected to the second end of the first elongate guide member; andthe embossed portion is arranged on the first elongate guide member closer to the first end than to the second end.
  • 20. The drawer glide mechanism of claim 16, wherein the cabinet attachment mechanism is rigidly affixed to the second portion of the embossed portion.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 17/582,888, titled DRAWER GLIDE MECHANISM and filed Jan. 24, 2022, which is a continuation of U.S. patent application Ser. No. 16/910,768, titled DRAWER GLIDE MECHANISM and filed Jun. 24, 2020, which is a continuation of U.S. patent application Ser. No. 16/375,713, titled DRAWER GLIDE MECHANISM and filed Apr. 4, 2019, which is a continuation of U.S. patent application Ser. No. 15/840,246, titled DRAWER GLIDE MECHANISM and filed Dec. 13, 2017, which is a continuation of U.S. patent application Ser. No. 15/186,224, titled DRAWER GLIDE MECHANISM and filed Jun. 17, 2016, which is a continuation of U.S. patent application Ser. No. 14/502,991, titled DRAWER GLIDE MECHANISM and filed Sep. 30, 2014, which is a continuation of U.S. patent application Ser. No. 13/445,665, titled DRAWER GLIDE MECHANISM and filed Apr. 12, 2012, which claims benefit under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 61/552,128, filed Oct. 27, 2011, and to U.S. Provisional Patent Application No. 61/606,266, filed Mar. 2, 2012. Each of the foregoing applications are hereby incorporated by reference herein in their entirety. Any and all priority claims identified in the Application Data Sheet, or any correction thereto, are hereby incorporated by reference under 37 CFR 1.57.

US Referenced Citations (181)
Number Name Date Kind
1343513 Lenhart Jun 1920 A
1910208 Gronberg et al. May 1933 A
2336153 Ryder Dec 1943 A
2551843 Knuth et al. May 1951 A
2692802 Kurtzon et al. Oct 1954 A
2711358 Gussack Jun 1955 A
2843444 Nelson et al. Jul 1958 A
2859070 Gomersall Nov 1958 A
2956605 Rapata Oct 1960 A
2981584 Friend Apr 1961 A
2985491 Hayes et al. May 1961 A
2992057 Maxwell et al. Jul 1961 A
3031249 Koch Apr 1962 A
3099501 Hilson et al. Jul 1963 A
3368859 Schreyer Feb 1968 A
3418869 Herpich Dec 1968 A
3451734 Laure Jun 1969 A
3469892 Langstroth Sep 1969 A
3829191 Jenkins Aug 1974 A
3869958 Murayama Mar 1975 A
3874748 Figueroa Apr 1975 A
4113328 Vander Meulen Sep 1978 A
4118088 Dunning, III Oct 1978 A
4181383 Naef Jan 1980 A
4240323 Kojima Dec 1980 A
4263833 Loudin Apr 1981 A
4278309 Dreiling Jul 1981 A
4288137 MacDonald Sep 1981 A
4295688 Blasnik Oct 1981 A
4311421 Okada Jan 1982 A
4362346 Emmert Dec 1982 A
4387942 Lense Jun 1983 A
4579492 Kazino Apr 1986 A
4581799 Bessinger Apr 1986 A
4597603 Trabert Jul 1986 A
4601522 Röck Jul 1986 A
4610587 Wollar Sep 1986 A
4737039 Sekerich Apr 1988 A
4842422 Nelson Jun 1989 A
4878791 Kurihara Nov 1989 A
4881826 Grass Nov 1989 A
4909558 Roshinsky Mar 1990 A
4919548 Lautenschlager Apr 1990 A
4979262 Lautenschlager Dec 1990 A
4998828 Hobbs Mar 1991 A
5039181 Lautenschlager Aug 1991 A
5257861 Domenig et al. Nov 1993 A
5302030 Buie et al. Apr 1994 A
5310255 Ranallo May 1994 A
5345959 Matteson Sep 1994 A
5387033 Domenig Feb 1995 A
5439283 Schröder et al. Aug 1995 A
5457807 Weinblatt Oct 1995 A
5457867 Maberry et al. Oct 1995 A
5466060 Hoffman Nov 1995 A
5490724 Domenig Feb 1996 A
5549376 Domenig Aug 1996 A
5562333 Domenig et al. Oct 1996 A
5564807 Rock et al. Oct 1996 A
5597220 Domenig et al. Jan 1997 A
5636820 Domenig Jun 1997 A
5636891 Van Order Jun 1997 A
5641216 Grass Jun 1997 A
5695265 Hoffman Dec 1997 A
5733026 Munachen Mar 1998 A
5746490 Domenig May 1998 A
5806949 Johnson Sep 1998 A
5823648 Domenig Oct 1998 A
5895101 Cabrales et al. Apr 1999 A
6010200 Hays Jan 2000 A
6076908 Maffeo Jun 2000 A
6106185 Isele et al. Aug 2000 A
6238031 Weng May 2001 B1
6257683 Yang Jul 2001 B1
6302502 Larsen, Jr. Oct 2001 B1
6325473 Brustle et al. Dec 2001 B1
6367900 Woerner Apr 2002 B1
6386660 Yang May 2002 B1
6386661 Woerner May 2002 B1
6402275 Yang Jun 2002 B1
6402276 King Jun 2002 B1
6478393 Kim et al. Nov 2002 B2
6494550 Chen et al. Dec 2002 B1
6494551 Markley Dec 2002 B1
6557960 Shih May 2003 B2
6565168 Baliko May 2003 B1
6585336 Munday et al. Jul 2003 B2
6601933 Greenwald Aug 2003 B1
6619771 Kueng et al. Sep 2003 B2
6619772 Dierbeck Sep 2003 B2
6733098 Branson May 2004 B1
6757937 Salice Jul 2004 B2
6788997 Frederick Sep 2004 B1
6854816 Milligan Feb 2005 B2
6854817 Simon Feb 2005 B1
6893091 Fenner May 2005 B1
6923518 Kim Aug 2005 B2
6945618 Kim et al. Sep 2005 B2
6988626 Varghese et al. Jan 2006 B2
7090320 Chen et al. Aug 2006 B2
7108143 Lin Sep 2006 B1
7331644 Lowe Feb 2008 B2
7331664 Lowe Feb 2008 B2
7883162 Langguth et al. Feb 2011 B2
7993084 Hitchcock Aug 2011 B2
8002470 Cheng Aug 2011 B2
8052234 Liang et al. Nov 2011 B2
8231189 Liang et al. Jul 2012 B2
8876232 Anderson Nov 2014 B2
9211008 Chen Dec 2015 B2
9375084 Lachman Jun 2016 B2
9398808 Anderson et al. Jul 2016 B2
9538844 Chen Jan 2017 B2
9756942 Lachman et al. Sep 2017 B2
10292495 Anderson et al. May 2019 B2
10299586 Powwarynn May 2019 B1
10327549 Lachman et al. Jun 2019 B2
10606011 Sedor et al. Mar 2020 B2
10729240 Anderson et al. Aug 2020 B2
11259633 Anderson et al. Mar 2022 B2
11779112 Anderson et al. Oct 2023 B2
20010054863 Uchino et al. Dec 2001 A1
20020074915 Shih Jun 2002 A1
20020089272 Liang Jul 2002 A1
20020180321 Chen et al. Dec 2002 A1
20030071548 Milligan Apr 2003 A1
20030107308 Kueng et al. Jun 2003 A1
20030111941 Noel Jun 2003 A1
20030111942 Judge et al. Jun 2003 A1
20030160552 Bacho et al. Aug 2003 A1
20040104651 Kreft et al. Jun 2004 A1
20040145285 Hwang Jul 2004 A1
20040145286 Kim Jul 2004 A1
20040207301 Chen et al. Oct 2004 A1
20040227441 Want et al. Nov 2004 A1
20040227442 Huang Nov 2004 A1
20040256333 Buhlmeyer et al. Dec 2004 A1
20050006996 Milligan Jan 2005 A1
20050218762 Lammens Oct 2005 A1
20050225219 Chen et al. Oct 2005 A1
20050264146 Fitz Dec 2005 A1
20050269922 Lai Dec 2005 A1
20050285492 Hu et al. Dec 2005 A1
20060078235 Chen et al. Apr 2006 A1
20060226748 Kinsel Oct 2006 A1
20060279187 Yang Dec 2006 A1
20080018213 Chen et al. Jan 2008 A1
20080111457 Ji et al. May 2008 A1
20080224583 Prenter Sep 2008 A1
20080284299 Chen Nov 2008 A1
20090174299 Lam et al. Jul 2009 A1
20090195133 Chang Aug 2009 A1
20100007255 Cheng Jan 2010 A1
20100300136 Kempte et al. Dec 2010 A1
20100310310 Hazzard Dec 2010 A1
20110080081 Klausing et al. Apr 2011 A1
20110234072 Hightower Sep 2011 A1
20120013235 Hisamatsu Jan 2012 A1
20120027325 Lacarra Feb 2012 A1
20120049712 Lebbezoo Mar 2012 A1
20120145845 Hightower Jun 2012 A1
20130058596 Chen et al. Mar 2013 A1
20130106271 Anderson et al. May 2013 A1
20130193824 Koenig Aug 2013 A1
20130249369 Gasser Sep 2013 A1
20130278125 Lang et al. Oct 2013 A1
20130334766 Okamoto Dec 2013 A1
20130334949 Yokoyama et al. Dec 2013 A1
20140015390 Grabherr Jan 2014 A1
20140044382 Chen Feb 2014 A1
20140079346 Chung Mar 2014 A1
20140191645 Kuba et al. Jul 2014 A1
20140265792 Chiu Sep 2014 A1
20140265795 Muller Sep 2014 A1
20150201752 Chen et al. Jul 2015 A1
20150275963 Petersson Oct 2015 A1
20150342346 Lachman et al. Dec 2015 A1
20170099947 Lachman et al. Apr 2017 A1
20170241698 Dubina Aug 2017 A1
20180146783 Stuffel et al. May 2018 A1
20180184806 Min Jul 2018 A1
Foreign Referenced Citations (6)
Number Date Country
411005 Aug 2003 AT
3818765 Oct 1989 DE
9209067 Sep 1992 DE
3643312 Oct 1993 DE
20116057 Dec 2001 DE
2901891 Aug 2015 EP
Related Publications (1)
Number Date Country
20240099462 A1 Mar 2024 US
Provisional Applications (2)
Number Date Country
61606266 Mar 2012 US
61552128 Oct 2011 US
Continuations (7)
Number Date Country
Parent 17582888 Jan 2022 US
Child 18461947 US
Parent 16910768 Jun 2020 US
Child 17582888 US
Parent 16375713 Apr 2019 US
Child 16910768 US
Parent 15840246 Dec 2017 US
Child 16375713 US
Parent 15186224 Jun 2016 US
Child 15840246 US
Parent 14502991 Sep 2014 US
Child 15186224 US
Parent 13445665 Apr 2012 US
Child 14502991 US