The present invention relates to drawers, especially of the type conventionally contained within a retaining or cabinet structure. The invention is particularly directed to a structure for guiding the travel path of a drawer within a retaining or cabinet structure.
A drawer of conventional construction typically includes a structure for retaining articles to be stored and a mechanism for translating that structure to a location which is generally secluded. Generally, the mechanism is operated by the user by simply applying an outwardly directed force to the drawer structure which results in the drawer structure being displaced to an orientation wherein the structure is rendered accessible to the user.
Scissors-type linkages have been historically used in a number of devices to provide movable characteristics. Such linkages facilitate a construction for displacing a structure between a closed, retracted position and an open, extended position. Scissors-type linkages permit a user to displace such a structure between the two positions in a controlled and predictable manner while avoiding deviations from a preselected path of travel.
A device which utilizes a scissors-type linkage is disclosed in U.S. Pat. No. 6,672,430. In the aforesaid patent a method for adjusting a first force applied to a movable element in a first position of the movable element by a force applying device is described. A second force may also be applied to the movable element in a second position of the movable element by the force applying device. Notably, the force applying device applies both the first and the second force through means of a scissors-type linkage assembly at a location on that assembly which is spacedly removed from the pivoted connection of the two scissor arms which constitute the structure of the scissor-arm assembly. Furthermore, the opposing end of the force applying device is movably disposed whereby the opposing end is free to move relative to the linkage during the displacement of the linkage.
Another device which utilizes a scissors-type linkage is disclosed in U.S. Pat. No. 5,632,209. In this construction a lift table includes a base which is interconnected to a table surface by means of a scissors-type linkage linkage. The table surface is elevated by the use of a compression spring which is secured to a first end of one of the scissors-type links. The opposing end of the compression spring is secured to a screw slider which is slidably secured to the other link of the linkage. Similar to the device disclosed in U.S. Pat. No. 6,672,430 one end of the force applying device, i.e. the compression spring, is attached to the linkage at a location on the linkage which is spacedly removed from the pivoted connection of the links which form the linkage. Moreover, in the U.S. Pat. No. 5,632,209 construction, the opposing end of the force applying device is secured to the linkage itself as opposed to being secured to a structure apart from the linkage.
The instant invention includes a retaining structure in association with a closure structure, which controls access to the retaining structure. A guidance device operably interconnects the retaining structure and the closure structure, for guiding the closure structure between a first closed position and a second open position. The retaining structure is accessible when the closure structure is disposed in the second open position. The invention further includes a force applying device movably coupled to the retaining structure and movably coupled to the guidance device. The force applying device is operable to displace the closure structure between the first closed position and the second open position.
The retaining structure is formed to define one or more storage areas which are configured to receive and retain an article or articles to be stored. The closure structure is configured to cover the retaining structure or otherwise preclude access to the interior of the retaining structure.
The guidance device may be coupled to the retaining structure. This coupling functions to anchor the guidance device in place relative to the retaining structure. The guidance device may also be coupled to the closure structure. The guidance device may include a scissors-type linkage having at least two arms, namely a first arm and a second arm, which are pivotally connected to one another about a pivoted connection. The guidance device may also include two guides, namely a first guide and a second guide. The first arm is pivotally connected to the first guide, preferably at one end of the first arm. The first guide defines a first slot therein in which the second arm is movably disposed for movement along a length of the first slot. The second guide is pivoted coupled to the second arm, preferably at an end of the second arm. The second guide defines a second slot therein in which is movably disposed the first arm for movement along a length of the second slot.
The force applying device may be any type of device capable of applying a linearly directed force. Preferably, the force applying device is a pressurized cylinder, e.g. a pneumatic or hydraulic cylinder. The force applying device may be pivotally coupled to the guidance device on a first end thereof and may be pivotally coupled to the retaining structure on its opposing end.
As illustrated in
The retaining structure 10 may include any type of structure which is configured to retain one or more articles intended to be stored. In the illustrated embodiment, the retaining structure is a boxlike structure having a planar top element 22, a planar bottom element 24 interconnected by a planar back element 26. The top element 22, the bottom element 24 and the back element 26 are all shown as being rectangularly configured panels having linear side edges. A pair of side elements 28 and 30 are positioned intermediate the top element 22 and the bottom element 24. The top element is coupled with each of the side elements 28 and 30 along the respective upper edge of each side element. Furthermore, the bottom element 24 is likewise coupled with the side elements 28 and 30 along the respective bottom edge of each side element. The side elements 28 and 30 are also coupled with the back element 26 along the upright side edge of each side element. The conjunction of the top, bottom, back and side elements forms a rectangularly configured boxlike structure which defines an access opening 31 between the unattached upright edges of the side elements 28 and 30.
The access opening 31 is framed by a plurality of generally co-planar panels which extend from the free edges of the side elements 28 and 30, the top element 22 and the bottom element 24. A first upright framing panel 32 extends from the free upright edge of side element 28. The plane of panel 32 is oriented perpendicularly to the plane of side panel 28. Frame panel 32 extends generally along the height of the free upright edge of side element 28. Similarly, the frame panel 36, disposed opposite from the frame panel 32 is also disposed along the upright free edge of the side element 30 and the plane of the frame panel 36 is oriented perpendicularly to the plane of the side element 30. Frame panel 34 extends laterally along the free edge of the top element 22. The plane of the frame element 34 is oriented perpendicularly to the plane of the top element 22. Similarly, the frame panel 38 extends laterally along the free edge of the bottom element 24. The plane of the frame panel 38 is oriented perpendicularly to the plane of the bottom element 24. The frame panel 38 is fitted on its upper edge with a horizontally extending shelf like element 40 which extends into the interior of the retaining structure. Similarly, the edge of the shelf like element 40 is fitted with an upstanding panel 42. The top edge of the panel 42 is fitted with a stop structure 44 which is adapted to preclude the further inward movement of the closure structure 12 into the interior of the retaining structure 10. The stop structure 44 may be configured to engage and intercooperate with a counterpart stop structure 45 which is secured to the inside face of the closure structure 12.
The frame panel 34 may also be configured to define an abutment surface for the closure structure 12. As shown to advantage in
The guidance device 14 is shown as including a scissors-like linkage, formed of two arms 50 and 52, in association with two guides 64 and 66. As shown to advantage in
The scissor arm linkage is pivotally secured to two guides 62 and 64. As shown each of the guides includes a planar base panel 68, 86 which is coupled on one of its longitudinal edges to an upstanding panel 69, 84. As shown in
Each of the guides 62 and 64 defines a respective slot 82, 98 therein. The slots 82 and 98 are elongate in configuration and extend longitudinally along each guide over a length which is determined by the desired extension length 99 of the guide assembly. The bolt-like element 72B passes through the slot 82 while the bolt-like element 90B extends through the slot 98. A washer element 75B is positioned intermediate the arm 50 and the bracket 62. The bolt like element 72B extends through the washer 75B and thereafter through an aperture in the arm 50. The bolt like element 72B then extends through another washer 76B and then through a threaded nut which secures the bolt like element 75B in position. It follows that in each connection of a bolt like element to a respective scissor arm 50 and 52 to a guide 62 and 64, a washer is positioned immediately above the guide and immediately below the guide to facilitate pivotal movement of the scissor arms 50 and 52 about the guide. Each of these two bolt-like elements 72B and 90B are adapted to be displaceable along the lengths of their respective slots 82 and 98 responsive to the pivoting motion of the arms 50,52 about the pivot point 54 defined by the axis 116 which passes through the bolt like element 56.
A power drive mechanism such as a gas or hydraulic cylinder is connected to the arms 50 and 52 through its connection to the bolt-like element 56. As shown in
An “L” shaped channel member 106 is secured to the guide 64 along its upstanding leg as shown in
Once the door 122 has been displaced outwardly substantially to the position shown in
It should be appreciated that although specific embodiments of the invention have been disclosed herein, the instant invention is subject to many changes, variations and modifications which do not depart from the spirit of the invention as disclosed. Accordingly, the scope of the invention is limited only by the following claims.
This application claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 60/859,276, filed Nov. 15, 2006, for “A DRAWER GUIDANCE MECHANISM.”
Number | Date | Country | |
---|---|---|---|
60859276 | Nov 2006 | US |