Aspects of the present invention relate generally to drawer systems and, more specifically, to drawer slides and slide profiles, as well as closure mechanisms including self-closing features.
The conventional drawer slide includes a drawer member and a cabinet member, and may include an intermediate member as well as a conventional self-closing mechanism. Typically, the drawer slide is mounted between a side of a drawer and a sidewall of a cabinet, with the drawer member affixed to the drawer, and the cabinet member affixed to the cabinet. With only a drawer member and a cabinet member, the drawer slide provides a maximum of ¾ extension (or travel). However, when an intermediate member is employed, the drawer slide provides full extension.
The drawer slide facilitates the opening and closing of a drawer in a cabinet. Thus, slides are used with drawers and trays to allow easy access to stored articles. In storage applications, where heavy articles may be stored, the slide members are subjected to very high forces, especially when the drawer is fully loaded and the slide is in the extended position. Under these high load conditions, the members in a conventional slide assembly will twist and bend, which eventually leads to fatigue failure after repeated opening and closing cycles. The member that is most susceptible to this kind of failure is the intermediate member because it encounters the highest levels of stress. In addition, although conventional slide assemblies employ one or more ball race tracks to keep the members together, they often fail to provide for optimum lateral stability.
The conventional self closing mechanism may include a slide component slidably mounted on, e.g., the cabinet member of the drawer slide and spring biased in the closing direction of the drawer slide, and an engagement component fixedly mounted on, e.g., the drawer member of the drawer slide. When the drawer slide is in the closed position, the engagement component is fully engaged with the slide component. As the drawer slide is pulled open, the engagement component pulls the slide component in the opening direction of the drawer slide against the spring force. When the slide component reaches a certain point, it locks into position and releases the engagement component. The slide component remains in the locked position until it is released by the engagement component when the drawer slide is pushed back to a closed position. Once it is released, the spring-biased slide component, now back in full engagement with the engagement component, pulls the engagement component in the closing direction of the drawer slide, thereby pulling the drawer slide to a closed position.
The conventional drawer slide/self-closing mechanism system has various drawbacks. For example, it is known that the conventional drawer slide is designed so that it can be expanded to a maximum width before it can no longer function properly. However, depending on the width of the drawer slide and the sidespace within which it is to be mounted (i.e., the space between the side of the drawer and the sidewall of the cabinet), certain configurations may be called for wherein, although the drawer slide remains functional, the self-closing mechanism does not because the engagement component can no longer reliably engage with the slide component.
Another drawback of the conventional self-closing mechanism is that, when mounted within the cabinet member of a drawer slide, it allows the intermediate member to slam against it. Excessive and/or repeated slamming can damage the self-closing mechanism and cause it to malfunction. In addition, the conventional self-closing mechanism typically has a high profile such that, when it is mounted within the cabinet member of a drawer slide, it does not allow the intermediate member and/or the drawer member to slide over it. This results in a decreased sliding length with respect to the drawer and intermediate members, which, in turn, lowers the load-bearing capacity of the drawer system.
Embodiments of the present invention are directed to slide assemblies and profiles, as well as closure mechanisms including self-closing and/or damping devices as described in more detail hereinbelow.
As shown in
The intermediate member 200 interfaces with the drawer slide member 300 via a first set of balls (e.g., ball bearings) 302, 304, 306 that are disposed in raceways formed between the intermediate member 200 and the inner surface of the drawer slide member 300. Similarly, the intermediate member 200 interfaces with the lower rail member 120 via a second set of balls (e.g., ball bearings) 102, 104, 106 that are disposed in raceways formed between the intermediate member 200 and the inner surface of the lower rail member 120. All of the balls are supported by a cage, which may be made of, e.g., plastic or metal, to keep the balls evenly spaced as the slide members are extended and retracted.
In each set mentioned above, the 3 balls are positioned such that, when viewed from the cross-sectional perspective shown in
The raceways-forming area of the intermediate member 200 has a top groove 210 which is open in a generally downward direction and a bottom groove 220 which is open in a generally upward direction. The intermediate member 200 also has a top inwardly-bent arm 215 which may be disposed substantially horizontally, and occupies a small portion of the top groove 210. Similarly, the intermediate member 200 includes a bottom inwardly-bent arm 225 which may be disposed substantially horizontally, and occupies a small portion of the bottom groove 220.
As noted previously, embodiments of the slide assembly may take on various configurations. Thus, for example, the partial extension slide shown in
Regardless of the specific configuration, in the extended position and with the drawer fully loaded, the slide members of the slide assembly are subjected to very high forces. Under these high load conditions, the members may twist and/or bend which, if unchecked, will eventually lead to fatigue failure after repeated opening and closing cycles. In this regard, and with reference to the illustrative example of a full-extension, 3-member assembly, the member that is most susceptible to the above-mentioned failure is the intermediate member 200, as this is the member that encounters the highest levels of stress.
To this end, embodiments of the invention include an intermediate member that has a high moment of inertia, thereby imbuing the member with superior structural rigidity in the vertical direction. For example, as shown in
As shown in
In addition, with the above construction, the drawer typically can be easily removed and installed onto the slide. Specifically, the bottom of the drawer, which sits on top of the drawer member 300, drags across the top of the drawer member as the drawer is removed and installed. The top of the drawer member, having a curved surface, comes into minimal contact with the bottom of the drawer. Since there is less friction between the drawer and the drawer member, it takes less effort to remove and install the drawer onto the drawer member.
For all of the above-mentioned embodiments, the drawer slide members may be made of steel, and may be fabricated by an extrusion process or a roll form process, among others.
Embodiments of the invention are also directed to closure mechanisms which may be employed in conjunction with one or more of the slide assemblies discussed above. In one embodiment, shown in
On its rear side, the carriage 550 includes a second catch 575 for receiving and holding therein the front portion of a spring (not shown) whose rear portion is connected to the rear end 518 of the rear section 522. Thus, the spring is located between, and parallel to, the left-hand side 512 and right-hand side 514 pieces of the housing 510. With the above structure, the spring imparts a closing force on the carriage 550, tending to move the carriage towards the rear end 513 of the front section 520, and the damper imparts a damping force on the carriage. In embodiments of the invention, the spring may be, e.g., an extension type spring.
In the assembled housing 510, respective ones of the carriage guide ledges 552,554 are received within, and move longitudinally along, respective ones of the carriage guide grooves on the two sides 512, 514 of the housing. Thus, for example, the left-hand side ledge 552 may engage with the carriage guide groove 524 of the left-hand side piece 512, and the right-hand side ledge 554 may engage with a matching carriage guide groove on the inner surface of the right-hand side piece 514. In addition, the damper 580 generally has sufficient rating to dissipate the kinetic energy of a full payload moving at maximum speed, and the rod 572 is attached to the carriage 550 in such a way as to allow limited vertical and/or horizontal rotation of the carriage 550, generally following its longitudinal direction of travel.
In an illustrative embodiment of the invention, the closure mechanism 500 may be coupled to the cabinet member, and the cam 561 may be coupled to the drawer member. As shown, e.g., in
In the illustrative embodiment mentioned above, the closure mechanism 500 may operate as follows: As the drawer is pulled open, the cam 561, which is coupled to, or integral with, the drawer member, and is resting inside mouth 560, pulls the carriage 550 forward, stretching out the spring, and extending the damper rod 572. When the front portion 551 of the carriage 550 reaches the rotation zone 530 in the front portion of the carriage guide groove 524, continued outward extension of the drawer (and, therefore, the drawer member having the cam 561 coupled thereto) causes the carriage to rotate downwards as it moves forward.
As the carriage 550 rotates forward, its front tooth 556 moves downward and releases the cam 561 to travel further with the drawer. The same rotational motion causes the rear ends 553 of the guide ledges 552, 554 to rotate and rise upwards, thereby engaging the matching housing notches 528 formed in the top edges 524a of the carriage guide grooves in the two sides 512, 514 of the housing. In this way, as the drawer is extended further outwardly, the carriage remains latched at the front end of the housing, counteracting the spring tension and positioned to readily re-engage the cam 561 when the drawer is pushed back inwardly.
When the drawer moves back, the cam 561 reaches the carriage 550 and pushes the rear tooth 558, causing it to rotate backwards which, in turn, causes the rear ends 553 of the guide ledges 552, 554 to disengage from the housing notches 528 and capture the cam 561 with the rising front tooth 556. Once the carriage is released from the notch, the spring pulls the carriage and, therefore, the drawer via the cam, inwards, toward the rear of the closure mechanism 500. At the same time, the damping cylinder 580 provides resistance to the drawer movement to slow it down to assure soft stopping at the end of travel. Once stopped, the cam remains inside the carriage's mouth so as to retain the drawer's closed position.
In this way, backward (i.e., inward) movement of the drawer is dampened, or cushioned, so as to avoid hard slamming of the drawer at the end of its closing stroke, while assuring that it not only comes to a complete closed position, but is also retained in this position against random creep. Typically, the retaining force is the minimum necessary, so as not to unnecessarily inhibit opening of the drawer.
It is noted that situations may arise in which the carriage is inadvertently released from the latched position while the drawer is in the open position. Here, a resetting feature will allow the closure mechanism to return to its normal operating mode. Specifically, at least one face 557 of the front tooth 556 may be tapered so as to form a ramp section at the front of the carriage. This allows the cam 561 to force the carriage to move laterally out of the way as the cam moves inwardly into the cabinet. This, in turn, causes the drawer member to be forced to the fully closed position, with the cam returning to its home position between the two teeth 556, 558, and ready to resume normal operation. In embodiments of the invention, in addition to the above-mentioned tapering of the front tooth, one or both side walls of the housing 510 may be thinned so as to allow improved lateral flexure of the wall(s) as the carriage moves out of the way of the inwardly-moving cam.
As noted previously, the above-described placement of the closure mechanism and cam are illustrative only, and other configurations may be used. Thus, for example, the closure mechanism may be coupled to the drawer member, with the cam coupled to the cabinet member.
Similarly, in embodiments of the invention, the damper may be disposed towards a top side of the closure mechanism's housing, and the spring may be disposed towards a bottom side of the housing. In this regard,
Disposed adjacent, and somewhat below, the first catch 670, is a second catch 675 for receiving and holding therein the front portion of a spring (not shown) whose rear portion is connected to the rear end 618 of the housing 610, below the damping cylinder 680. Thus, both the damper 680 and the spring are located between, and parallel to, the left-hand side and right-hand side pieces of the housing 610, with the spring being disposed below the damper 680. As with the embodiments described previously, the spring imparts a closing force on the carriage 650, tending to move the carriage towards the rear end 618 of the housing 610, and the damper 680 imparts a damping force on the carriage. As noted, the damper 680 generally has sufficient rating to dissipate the kinetic energy of a full payload moving at maximum speed, and the rod is attached to the carriage 650 in such a way as to allow limited vertical and/or horizontal rotation of the carriage 650, generally following its longitudinal direction of travel.
In an alternative embodiment, the closure mechanism 700, shown in
With reference to the bottom view shown in
As shown in
In an illustrative embodiment, the closure mechanism 700 may be coupled to an underside of a drawer member 901, such that the bottom side of the carriage 750 and the spring 800 face the drawer member's underside (i.e., bottom-side up). With this orientation, the tab 761 may then be coupled to, or integral with, the cabinet member 903. See, e.g.,
In operation, and with reference to the illustrative example shown in
With reference to, e.g.,
As the carriage continues to rotate, it allows the teeth 754, 756 to release the tab 761 from the mouth 760. At this point, the same rotational motion causes a locking edge 757 of the carriage to rotate downwards, thereby engaging the recess 730 of the housing base. In this way, as the drawer is extended further outwardly, the carriage remains latched, or locked, counteracting the spring tension and positioned to readily re-engage the tab 761 upon the drawer member's return towards the closed position. When the drawer member returns, the tab 761 pushes against the tooth 756 of the carriage, causing the carriage 750 to rotate which, in turn, releases the carriage from the latched position and allows the spring 800 to pull the drawer to full closure.
As with previous embodiments, in the event that the carriage 750 is inadvertently released from the latched position while the drawer member is in the open position, a resetting feature allows the closure mechanism to return to its normal operating mode. Specifically, with reference to
The instant embodiment provides a configuration in which the guide channel for the carriage is in the same plane of motion as that of the drawer member, which provides for smoother motion. In addition, in an illustrative manufacturing process, the parts in the assembly may be created with an open and close injection mold, with the carriage snapping into place of the holder, which makes assembly a simple process. In this way, installation may involve a simple three step process as follows: First, the carriage is assembled onto the housing. The guide channel of the housing will spring open and accept the carriage. Once inserted, the carriage is fully contained and will only move along the direction of the guide channel. Next, the spring, with sufficient spring force to pull a drawer to full closure, is attached between the carriage and the housing. Finally, the whole assembly is inserted into the drawer member of the slide assembly.
In embodiments of the invention, the closure mechanism 700 may also include skirts, or flanges 715, 717 that extend from respective portions of a side wall of the housing 710. Specifically, as shown, for example, in the bottom view of
As shown in
It is noted that the inventions described herein may be used in various applications, such as, e.g., a drawer as part of an appliance, such as a refrigerator, or some piece of furniture, or toolbox, etc. In addition, it is understood that, while some of the aspects of the inventions have been described hereinabove with reference to only one side of a drawer-cabinet system, the same principles may be applied to the opposite side as well. Thus, for example, a closure mechanism 500, 600, and/or 700 may be used in conjunction with either the left, or the right, or both sides of a drawer/cabinet member.
While the description above refers to particular embodiments of the present invention, it will be understood that many modifications may be made without departing from the spirit and scope thereof. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims, rather than the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
This application claims priority from Provisional Application Ser. No. 61/063,474, filed Feb. 4, 2008, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3451730 | Thomas et al. | Jun 1969 | A |
4653821 | Faust | Mar 1987 | A |
4752142 | Jackson et al. | Jun 1988 | A |
4752143 | Lautenschlager, Jr. | Jun 1988 | A |
5207781 | Rock | May 1993 | A |
5240318 | Schroder et al. | Aug 1993 | A |
5474375 | Hollenstein et al. | Dec 1995 | A |
5570943 | Schroder et al. | Nov 1996 | A |
5775788 | Sasse et al. | Jul 1998 | A |
5882100 | Rock | Mar 1999 | A |
6132020 | Schael et al. | Oct 2000 | A |
6378968 | Weng | Apr 2002 | B1 |
6846053 | Salice | Jan 2005 | B2 |
7244005 | Lu | Jul 2007 | B1 |
7374260 | Lu | May 2008 | B2 |
7481505 | Orita | Jan 2009 | B2 |
20020011766 | Kim et al. | Jan 2002 | A1 |
20030090186 | Weng | May 2003 | A1 |
20050093406 | Yang | May 2005 | A1 |
20050184629 | Yang | Aug 2005 | A1 |
20070132346 | Huang | Jun 2007 | A1 |
20070278917 | Yang | Dec 2007 | A1 |
20070278919 | Lu | Dec 2007 | A1 |
20090045710 | Compagnucci | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
31 27 701 | Feb 1983 | DE |
33 23 195 | Jan 1985 | DE |
35 35 332 | Apr 1987 | DE |
90 07 365.7 | Aug 1991 | DE |
195 11 999 | Oct 1996 | DE |
20 2007 007 959 | Sep 2007 | DE |
0 226 389 | Jun 1987 | EP |
0 720 824 | Jul 1996 | EP |
1 188 397 | Mar 2002 | EP |
1 277 422 | Jan 2003 | EP |
2 061 705 | May 1981 | GB |
2 415 606 | Jan 2006 | GB |
WO 2007.108601 | Sep 2007 | WO |
WO 2007111424 | Oct 2007 | WO |
Entry |
---|
PCT International Search Report and Written Opinion of the International Searching Authority (PCT/US2009/000591) (Jan. 6, 2010) (10—pgs). |
Invitation to Pay Additional Fees/Partial International Search, (PCT/US2009/000591), (4—pgs). |
Number | Date | Country | |
---|---|---|---|
20090195131 A1 | Aug 2009 | US |
Number | Date | Country | |
---|---|---|---|
61063474 | Feb 2008 | US |