The invention concerns a drawing carriage for a drawing machine in accordance with the preamble of claim 1 as well as a drawing machine in accordance with the preamble of claim 5.
Drawing machines are used to draw elongate metal objects, such as rods or pipes through a drawing tool. It is by means of the drawing tool that the metal objects are given a desired peripheral shape.
A drawing carriage as well as a drawing machine of the kind mentioned at the beginning are known from DE 932 786 B. A plurality of drawing carriages are moved in circles on a continuous chain of the drawing machine, with the drawing carriages alternately grasping the material to be drawn by means of clamping jaws and pulling it through the drawing tool along a drawing path. In one embodiment, the clamping jaws are closed and opened in a purely mechanical way, in that levers interacting with the clamping jaws are actuated automatically by way of stops disposed at the drawing bench. The drawing carriage swinging into the drawing path from the return path under the drawing path has open clamping jaws which take hold of the material to be drawn between them. The first stop collaborates with the closing lever and causes the clamping jaws to close. At the end of the drawing path, a second stop causes the clamping jaws to open so that the drawing carriage can be led back. In an alternative version, two solenoids are used, one of which is responsible for the closing motion and the other one is responsible for the opening motion. The solenoids respectively actuate the opening/closing levers in a stroke-like manner by way of jointed rods, with the power being supplied by way of sliding contacts.
DE 101 22 657 A1 discloses a drawing unit for a drawing machine, which comprises a drawing carriage of the kind mentioned at the beginning. The drawing machine according to the state of the art can operate continuously, in that a plurality of drawing carriages are present and it draws the material to be drawn in hand-to-hand operation. The periodic movement of the, e.g. two drawing carriages is then coordinated in such a way that a first drawing carriage grasps and draws the material to be drawn, while the second drawing carriage returns to an initial position in order to grasp the material to be drawn. When the second drawing carriage starts with the drawing process, the first drawing carriage has already disengaged from the material to be drawn and returns in turn to its initial position in order to again grasp and draw the material to be drawn. The movement of the drawing carriages parallel to the drawing direction can, e.g. be provided by means of a rotating drum having ridges running on a curvilinear path on the surface of the drum or by means of linear motors (see DE 37 29 892 A1).
The known drawing carriages have clamping jaws for grabbing the material to be drawn. The clamping jaws are directly or indirectly positioned at wedge-shaped guides, so that a self-locking clamping operation takes place during the drawing process. The manner of opening and closing the clamps is not explicitly disclosed. However pneumatic or hydraulic clamping is usually provided. Such hydraulic or pneumatic systems are more reliable than purely mechanical systems and react very quickly, but have the disadvantage that they must be set very precisely to the ideal closing and opening time.
It is now an object of the present invention to make available a drawing carriage and a drawing machine of the kind mentioned at the beginning, which have an alternative clamping jaw moving device for the opening and closing movements of the clamping jaws as compared to the state of the art.
This object is achieved by means of a drawing carriage of the kind mentioned at the beginning by way of the characterizing features of claim 1 and by means of a drawing machine of the kind mentioned at the beginning by way of the characterizing feature of claim 5.
A linear motor for the opening and closing movement of the clamping jaws is less costly in comparison with the pneumatic or hydraulic solution or in comparison with the use of two solenoids in accordance with the state of the art. It is thus possible to do without mechanical components, whereby maintenance costs can be reduced. No mechanical setting of the clamping jaws is needed. Moreover, the clamping jaws can be positioned more accurately by a linear motor and the response time of the system is shorter. In addition, the effect of temperature on the system is reduced or can be completely disregarded. In comparison with an electric motor having a rotary drive as an alternative, a considerable benefit lies in the fact that a conversion of a rotational to a translational movement by means of the gear mechanisms as required for this is not required.
In the case of a drawing machine in which at least two drawing carriages grab the material to be drawn, e.g. a bar-shaped material, in particular for the production of wires, alternately in hand-to-hand operation, the proper adjustment of the clamping jaw movement is important. The translational movement of the respective carriage and the closing and/or opening movement of the clamping jaws must, in particular, be precisely coordinated, e.g. to avoid slippage of the material to be drawn in the drawing carriage because the clamping jaws close too late, or buckling because the clamping jaws close too early. Such a coordination or synchronization is e.g. achieved by determining the position of the drawing carriage, e.g. by monitoring a drive means for the drawing carriage.
It is thus e.g. possible for the at least one drawing carriage to be driven over drive cams consisting of curved ridges of a rotary drive unit, e.g. a drive shaft. The curved ridge provided for a drawing carriage is grasped by this drawing carriage, whereby the drawing carriage is forced to undergo a translational back and forth motion. The drive unit can be configured so that the position of the drawing carriage at a given rotational position of the drive unit is unequivocal. It is thus possible to determine the moment at which the linear motor moves the clamping jaws of the drawing carriage to open or close from the rotational position of the drive unit, which can, e.g. be determined by way of a rotational position encoder. The position of the drawing carriage can of course alternatively be monitored directly, e.g. by means of visual or electrical sensors.
The dependent claims set out other advantageous embodiments.
An advantageous variant of the drawing carriage, as well as an example embodiment of the drawing machine is described in the following by way of example using figures, in which:
A linear motor 4 is arranged on an upper part 3 of the drawing carriage 1 shown in top view in
Similarly optional disk spring stacks 21 in
When the drawing carriage 1 has its clamping jaws 16 in the open state, it is detached from material to be drawn (not shown here) that has passed through the drawing carriage 1, or there is no material to be drawn in it. The material to be drawn can be introduced into the drawing carriage 1 via an inlet 20 for the material to be drawn. Optional feed-in pincers 24 can be used for this, which can, e.g. also be moved relative to the lower part 15 of the drawing carriage 1 by way of a linear motor (not shown in detail) and which draws in the material that is to be conveyed until it can be grasped by the clamping jaws 16. When the drawing carriage 1 is in the engaged position, the closed state is reached by means of the movement of the linear motor 4, as the clamping jaw holders 13 are displaced in the direction of the inlet 20 for the material to be drawn, i.e. to the right in
For the wire production operation, at the front end of the drawing machine (to the right in
When the front drawing carriage 1a carrying the material to be drawn between the clamping jaws reaches its left hand position again, the material to be drawn is handed over to the second drawing carriage 1b, which executes a translational movement in the direction opposite to that of the drawing carriage 1a. The front drawing carriage 1a is thus in its rearmost position for the transfer of the material to be drawn, while the rear drawing carriage 1b assumes its front-most position. Therefore, exactly one of the two drawing carriages 1a or 1b, with closed clamping jaws 16, always pulls the material to be drawn to the left in
Number | Date | Country | Kind |
---|---|---|---|
10 2016 113 686.7 | Jul 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2017/100620 | 7/25/2017 | WO | 00 |