The present invention relates generally to drawn arc welding.
When work pieces, such as sheet metal are affixed together using an adhesive (forming a joint between the two work pieces), there may be situations where a repair is needed if a discrepancy may exist in the adhesive joint. To repair such a discrepancy, rivets or screws may be used to repair the joint. Others may have tried to bond a stud to one of the work pieces in an attempt to repair the joint, but this may not be as good of a repair as is desired.
An embodiment contemplates a drawn arc welding assembly for simultaneously welding a stud to a first workpiece and a second workpiece that are affixed together and have an electrically insulating joining layer between the workpieces, the first workpiece and joining layer having a cavity extending therethrough and partially through the second workpiece. The assembly may comprise an electric power supply; a first electrode from a first output of the electric power supply operatively engageable to the stud and configured to supply electrical power to the stud; a first lead configured to operatively engage the first workpiece; a second lead configured to operatively engage the second workpiece; a first diode, having a first electrical orientation, electrically connected between the first lead and a second output of the electric power supply; and a second diode, having a second electrical orientation opposite of the first diode, electrically connected between the second lead and the second output of the electric power supply.
An embodiment contemplates a method of drawn arc welding a stud simultaneously to a first workpiece and a second workpiece, with the first workpiece affixed to the second workpiece and with an electrically insulating joining layer between the first and second workpieces, the method comprising the steps of: boring a cavity through the first workpiece, the joining layer and only a portion of the second workpiece; connecting a first electrode from a first output of a power supply to the stud; connecting a first lead to the first workpiece, the first lead electrically connected via a first diode, having a first electrical orientation, to a second output of the power supply; connecting a second lead to the second workpiece, the second lead electrically connected via a second diode, having a second electrical orientation opposite to the first electrical orientation, to the second output of the power supply; pressing the stud into the cavity into contact with the first workpiece and the second workpiece; activating the power supply to apply a pilot arc; moving the stud away from the first and second workpieces to simultaneously form a first arc between the stud and the first workpiece and a second arc between the stud and the second workpiece; increasing the power output from the power supply so as to cause the surfaces of the first and second workpieces in the cavity to partially melt; and pressing the stud into the partially melted surfaces to thereby simultaneously weld the stud to the first workpiece and the second workpiece.
An advantage of an embodiment is that a joint between a pair of workpieces can be repaired by welding a single stud to both workpieces simultaneously. Two independently controlled parallel arcs between a single stud and two work pieces, created by a single DC or AC parallel circuit in the drawn arc welding assembly, allows for melting of all contact surfaces just prior to plunging and solidification. This allows for a good joint repair where the single stud is drawn arc welded to the two workpieces, separated by an insulating layer, simultaneously. Thus, this drawn arc welding method allows for simultaneous welding of a stud or other object to both pieces of laminated steel (with non-conductive lamination layer), or to both pieces of a layered build having sealer and/or adhesive between the sheets, thereby greatly increasing the joint strength and stiffness.
Referring to
A boring tool 34, which may have a semi-spherical head 28, is shown located adjacent to one of the workpieces (in this example, the upper workpiece 22) just prior to using the boring tool 34 to bore a cavity 30 (shown in
A non-limiting example of the workpiece assembly 20 is two pieces of sheet metal that form a portion of a vehicle body that have been secured together with adhesive. Thus, while the terms “upper” and “lower” have been used herein, they are only for convenience in referring to the drawings and are not meant to be limiting as to the orientation in space of different portions of the workpiece assembly.
Referring to
A drawn arc welding assembly 40 includes an electronic circuit 42 and a stud gun 38. The stud 36 may be supported and maneuvered by the stud gun 38, as the stud 36 is moved relative to the workpiece assembly 20 during welding operations. The stud gun 38 may also provide electric power to the stud 36 during the welding operation.
The electronic circuit 42 includes an upper workpiece lead (electrode) 44 connected to the upper workpiece 22 and a lower workpiece lead (electrode) 46 connected to the lower workpieces 24. The joining layer 26 has a small amount of conductivity and so acts as a relatively high resistance resistor between the leads 44, 46. The upper workpiece lead 44 connects at its opposite end from the upper workpiece 22 to an upper workpiece diode 50, having a first orientation, while the lower workpiece lead 46 connects at its opposite end from the lower workpiece 24 to a lower workpiece diode 52, having an electrical orientation opposite to that of the upper workpiece diode 50. The diodes 50, 52 are connected to a first connector 56 of a dual inverter power supply 54, which provides chopped AC current. The stud gun 38, and hence the stud 36, are connected to a second connector 57 of the power supply 54. While the current does not have to be chopped AC current, this may be the preferable current supply for the system.
The operation of the drawn arc welding assembly 40 will now be discussed relative to
The boring tool 34 is used to create the cavity 30, which bores through the upper workpiece 22, the joining layer 26 and only a portion of the thickness of the lower workpiece 24. The stud 36 is loaded in the stud gun 38. The stud gun 38 directs the stud 36 into the cavity 30 in contact with the workpiece assembly 20. The dual inverter power supply 54 is activated so that two pilot arcs 60, 62 are applied. This pilot arc may be, for example, about 30 amperes. The stud gun 38 lifts the stud 36 so that it forms a gap 58, for example, of about 0.5 to 1.5 millimeters from the surfaces forming the cavity 30. The gap 58 shown in
Having the two leads 44, 46 attached to different workpieces 22, 24 (acting as two separate stationary electrodes) with an insulating joining layer 26 between them, along with the oppositely oriented diodes 50, 52, allows for both a first arc 60 extending between the stud 36 (acting as a first movable electrode) and the upper workpiece 22 and second arc 62 extending between the stud 36 and the lower workpiece 24. In this case a dual inverter power supply 54 allows the current from one inverter to be conducted through one arc 60 and the current from the second inverter (or even the same inverter using the opposite polarity) to be pulsed to the second arc 62. By independently controlling the two arcs 60, 62, all three surfaces can be simultaneously melted. The independent control of the current of each arc is achieved by controlling the current of the chopped half cycles.
The arcs 60, 62 are maintained to melt the surfaces of the workpieces 22, 24. Once melted sufficiently, the stud gun 38 plunges the stud 36 into the molten surfaces, to secure the new welded assembly together. Plunging the stud 36 into the workpieces 22, 24 extinguishes the arcs and allows for immediate solidification. Power from the power supply 54 is cut, the stud gun 38 plunges the stud 36 into the workpiece 20 and the weld is complete. Thus, the stud 36 is welded to both the upper workpiece 22 and the lower workpiece 24 simultaneously, creating a strong joint between the two workpieces 22, 24 where there may have been a discrepancy in the joint 32 between the workpieces 22, 24.
While certain embodiments of the present invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2115707 | Crecca et al. | May 1938 | A |
2307026 | Crecca | Jan 1943 | A |
2451190 | Anderson | Oct 1948 | A |
2843727 | Benz, Jr. et al. | Jul 1958 | A |
2878363 | Shoup et al. | Mar 1959 | A |
2898443 | Havemeyer | Aug 1959 | A |
2922542 | Barr | Jan 1960 | A |
3047711 | Graham | Jul 1962 | A |
3099789 | Perrins | Jul 1963 | A |
3182172 | Dash | May 1965 | A |
3249735 | Needham | May 1966 | A |
3435325 | Arthur, Jr. | Mar 1969 | A |
3530359 | Franklin | Sep 1970 | A |
3568032 | Mages et al. | Mar 1971 | A |
3569663 | Weman | Mar 1971 | A |
3588465 | Anderson | Jun 1971 | A |
3637971 | Needham et al. | Jan 1972 | A |
3649903 | Fiedler | Mar 1972 | A |
3657724 | Feeley et al. | Apr 1972 | A |
3683149 | Mages et al. | Aug 1972 | A |
3838786 | Bachmann et al. | Oct 1974 | A |
3894210 | Smith et al. | Jul 1975 | A |
3904846 | Risberg | Sep 1975 | A |
4044223 | Paton et al. | Aug 1977 | A |
4106087 | Kawasaki | Aug 1978 | A |
4129770 | Gogolin et al. | Dec 1978 | A |
4132879 | Glorioso | Jan 1979 | A |
4261245 | Mauer | Apr 1981 | A |
4398080 | Johansson et al. | Aug 1983 | A |
4417120 | Lumbra et al. | Nov 1983 | A |
4618760 | Murch et al. | Oct 1986 | A |
4797529 | Schmitt et al. | Jan 1989 | A |
4804820 | Shoup | Feb 1989 | A |
4806735 | Ditschun et al. | Feb 1989 | A |
5171959 | Schmitt et al. | Dec 1992 | A |
5281791 | Tabata et al. | Jan 1994 | A |
5349152 | Renner | Sep 1994 | A |
5393164 | Renner et al. | Feb 1995 | A |
5579986 | Sherry et al. | Dec 1996 | A |
5582751 | Hagiwara et al. | Dec 1996 | A |
5676867 | Van Allen | Oct 1997 | A |
5685680 | Duffy et al. | Nov 1997 | A |
5742023 | Fortmann | Apr 1998 | A |
5866866 | Shimada | Feb 1999 | A |
5938945 | Hofmann et al. | Aug 1999 | A |
5977506 | von Daniken | Nov 1999 | A |
6362448 | Roser | Mar 2002 | B1 |
6388224 | Torvinen | May 2002 | B1 |
6815631 | Schmitt et al. | Nov 2004 | B2 |
7009144 | Schmidt et al. | Mar 2006 | B2 |
7141753 | Kondo et al. | Nov 2006 | B2 |
7291803 | Karakas | Nov 2007 | B2 |
8242410 | Peters | Aug 2012 | B2 |
8410400 | Fondriest | Apr 2013 | B2 |
8502106 | Ulrich et al. | Aug 2013 | B2 |
20040182828 | Schmidt et al. | Sep 2004 | A1 |
20050045608 | Sykes et al. | Mar 2005 | A1 |
20050056620 | Broehl | Mar 2005 | A1 |
20050161448 | Stava et al. | Jul 2005 | A1 |
20050252891 | Nakagami | Nov 2005 | A1 |
20070007255 | Mizoguchi | Jan 2007 | A1 |
20070056934 | Hsu | Mar 2007 | A1 |
20090084768 | Ohashi et al. | Apr 2009 | A1 |
20100170880 | Hsu et al. | Jul 2010 | A1 |
20100288735 | Schmitt et al. | Nov 2010 | A1 |
20100288736 | Miura | Nov 2010 | A1 |
20100301029 | Meckler et al. | Dec 2010 | A1 |
20100314371 | Davidson et al. | Dec 2010 | A1 |
20120175356 | Magerl et al. | Jul 2012 | A1 |
20130062327 | Hsu et al. | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
01273676 | Nov 1989 | JP |
Number | Date | Country | |
---|---|---|---|
20130263434 A1 | Oct 2013 | US |