The present disclosure relates to a dresser. The present application claims a priority based on Japanese Patent Application No. 2018-076822 filed on Apr. 12, 2018, the entire content of which is incorporated herein by reference.
Conventionally, diamond has been used as a material for dressers. For example, Japanese Patent Laying-Open No. 8-229818 (Patent Literature 1) discloses a diamond dresser, wherein a single-crystal columnar diamond is embedded in a dressing surface of a substrate.
In such a diamond dresser, a front end portion (portion exposed from the substrate) of the single-crystal columnar diamond serving as a cutting edge is gradually worn due to use thereof. The life thereof is expired in the following manner: a diamond portion ceases to exist; or the diamond portion falls off from the substrate before the diamond portion ceases to exist.
PTL 1: Japanese Patent Laying-Open No. 8-229818
A dresser according to the present disclosure includes:
a mount component; and
a cutting edge component inserted in the mount component at a base end portion side, the cutting edge component being fixed to the mount component by bringing, into contact with the mount component, a portion of the cutting edge component inserted in the mount component, the cutting edge component being exposed from the mount component at a front end portion side to form a cutting edge, wherein
the portion of the cutting edge component inserted in the mount component has one or more portions in each of which an area of a cross section along a line normal to an insertion direction of the cutting edge component is increased from the front end portion side toward the base end portion side in the insertion direction, and
a ratio L1/M1 of a length L1 and a maximum value M1 is more than or equal to 2.1, where L1 represents a length of the portion of the cutting edge component inserted in the mount component and M1 represents a maximum value of a diameter of a circle having an area equal to the area of the cross section along the line normal to the insertion direction in the portion of the cutting edge component inserted in the mount component.
Shape and area of the columnar diamond in Japanese Patent Laying-Open No. 8-229818 (Patent Literature 1) at a cross section perpendicular to the longitudinal direction are constant in the longitudinal direction except for manufacture tolerance. Accordingly, when the length of the columnar diamond, more specifically, the length of the embedded portion (portion embedded in the substrate) of the columnar diamond in the longitudinal direction becomes short as a result of repeated use of the front end portion of the dresser, a contact area between the embedded portion of the columnar diamond and the substrate becomes small to reduce force against a load applied from outside to the columnar diamond, with the result that the columnar diamond is facilitated to fall off from the substrate. As a result, the columnar diamond falls off from the substrate before completely using the columnar diamond in the longitudinal direction, with the result that an expected tool life may not be attained.
Thus, the present object is to provide a dresser having a long tool life.
The dresser according to the above-described embodiment can have a long tool life.
First, embodiments of the present disclosure are listed and described.
(1) A dresser according to the present disclosure includes:
a mount component; and
a cutting edge component inserted in the mount component at a base end portion side, the cutting edge component being fixed to the mount component by bringing, into contact with the mount component, a portion of the cutting edge component inserted in the mount component, the cutting edge component being exposed from the mount component at a front end portion side to form a cutting edge, wherein
the portion of the cutting edge component inserted in the mount component has one or more portions in each of which an area of a cross section along a line normal to an insertion direction of the cutting edge component is increased from the front end portion side toward the base end portion side in the insertion direction, and
a ratio L1/M1 of a length L1 and a maximum value M1 (hereinafter, also referred to as “(L1/M1)”) is more than or equal to 2.1, where L1 represents a length of the portion of the cutting edge component inserted in the mount component and M1 represents a maximum value of a diameter of a circle having an area equal to the area of the cross section along the line normal to the insertion direction in the portion of the cutting edge component inserted in the mount component.
This dresser can have a long tool life.
(2) Preferably, a distance in the insertion direction to the base end portion of the cutting edge component from at least one of the portions in each of which the area of the cross section of the portion of the cutting edge component inserted in the mount component along the line normal to the insertion direction is increased from the front end portion side toward the base end portion side is less than ½ of the length L1, where L1 represents the length of the portion of the cutting edge component inserted in the mount component in the insertion direction. Accordingly, even when the cutting edge component is worn to become short due to use of the dresser, the cutting edge component is less likely to be separated, whereby the dresser can have a longer tool life.
(3) Preferably, a difference M1-M2 between the maximum value M1 and a minimum value M2 (hereinafter, also referred to as “(M1-M2)”) is more than or equal to 0.01 mm, where M1 represents the maximum value of the diameter of the circle having the area equal to the area of the cross section along the line normal to the insertion direction in the portion of the cutting edge component inserted in the mount component, and M2 represents a minimum value of the diameter of the circle having the area equal. Accordingly, even when the cutting edge component is worn to become short due to use of the dresser, the cutting edge component is less likely to be separated, whereby the dresser can have a longer tool life.
(4) Preferably, the cutting edge component includes diamond or cubic boron nitride. Since each of diamond and cBN has a high hardness, the dresser can have an excellent wear resistance when each of these is used for the cutting edge component, whereby a longer tool life can be attained.
(5) Preferably, the cutting edge component is composed of a single-crystal diamond, and a surface of the cutting edge component to come into contact with a workpiece corresponds to a (100) plane, a (110) plane or a (211) plane. Since the (100) plane, the (110) plane and the (211) plane of diamond provides excellent wear resistance, the dresser can have a excellent wear resistance when each of these is used for the surface to come into contact with a workpiece, whereby a longer tool life can be attained.
(6) Preferably, the area of the cross section of the portion of the cutting edge component inserted in the mount component along the line normal to the insertion direction has a maximum value at the base end portion of the portion of the cutting edge component inserted in the mount component. Accordingly, even when the cutting edge component is worn to become short due to use of the dresser, the cutting edge component is less likely to be separated, whereby the dresser can have a longer tool life.
(7) Preferably, the area of the cross section is monotonously increased as a distance is decreased between the cross section and the base end portion of the portion of the cutting edge component inserted in the mount component along the insertion direction. Accordingly, even when the cutting edge component is worn to become short due to use of the dresser, the cutting edge component is less likely to be separated and is less likely to be broken, whereby the dresser can have a longer tool life.
(8) Preferably, the area of the cross section of the portion of the cutting edge component inserted in the mount component along the line normal to the insertion direction is once decreased and then increased as a distance is decreased between the cross section and the base end portion of the portion of the cutting edge component inserted in the mount component along the insertion direction. Accordingly, even when the cutting edge component is worn to become short due to use of the dresser, the cutting edge component is less likely to be separated, whereby the dresser can have a longer tool life.
(9) Preferably, the dresser is a point type single-point dresser, a blade type multi-point dresser, or a rotary type dresser. Even when the cutting edge component is worn to become short due to use of each of these dressers, the cutting edge component is less likely to be separated, whereby the dresser can have a longer tool life.
The following describes a specific example of a dresser of the present disclosure with reference to figures.
The same reference characters indicate the same or equivalent portions in the figures. Dimensions, such as length, width, thickness, and depth, are appropriately changed for clarity and simplification of the figures and do not represent actual dimensions.
The following describes a dresser according to a first embodiment with reference to
As shown in
Mount component 8 holds and fixes cutting edge component 1 by way of contact with cutting edge component 1. As shown in
For a material of mount component substrate 2, a carbon steel, an alloy steel, various types of steel materials, or the like can be used. As a material of joining material 7, a sintered alloy can be used.
In dresser 3 shown in
The shape of mount component 8 is not limited to the shape shown in
A point type single-point dresser 43 shown in
A blade type multi-point dresser 53 shown in
A rotary type dresser shown in
Cutting edge component 1 includes: portion 1a inserted in mount component 8 along the one insertion direction (a direction of a downward arrow in
Here, the term “insertion direction” refers to a direction from a dressing surface 4 toward inside of mount component 8 along a line normal to dressing surface 4, wherein dressing surface 4 represents the surface of mount component 8 in which the recess is formed. As shown in
Portion 1a of cutting edge component 1 inserted in mount component 8 has one or more portions in each of which an area of a cross section along a line normal to the insertion direction of cutting edge component 1 is increased from the front end portion T side toward the base end portion P side in the insertion direction. A specific example of the shape of cutting edge component 1 will be described below.
In dresser 3 shown in
Therefore, in dresser 3 shown in
The shape of cutting edge component 1 is not limited to the quadrangular truncated pyramid, and can be a circular cone, a circular truncated cone, a pyramid, or a truncated pyramid other than the quadrangular truncated pyramid, for example. When the cutting edge component having such a shape is inserted in mount component 8 such that the bottom surface thereof serves as base end portion P and the apex side thereof serves as front end portion T, the area of the cross section of the inserted portion of the cutting edge component along the line normal to the insertion direction is monotonously increased from the front end portion T side toward the base end portion P side in the insertion direction.
When inserted portion 1a of cutting edge component 1 has one or more portions in each of which the area of the cross section along the line normal to the insertion direction is increased from the front end portion T side toward the base end portion P side in the insertion direction, a fitted portion is formed between inserted portion 1a and mount component 8, with the result that cutting edge component 1 is less likely to be separated from mount component 8. Therefore, even when the cutting edge component is worn to become short due to use of the dresser, the cutting edge component is not separated from the mount component, whereby the dresser can have a long tool life.
Conventionally, in order to prevent the cutting edge component from being separated from the mount component, the cutting edge component and the mount component are firmly joined to each other using a sintered alloy. Accordingly, the cutting edge component is subjected to a high-temperature and high-pressure condition during joining and a difference in thermal expansion between the cutting edge component and the sintered alloy becomes large, with the result that an excessive load may be applied to the cutting edge component to cause damage therein. If there is damage inside the cutting edge component, a damage portion is exposed when the cutting edge component is worn due to use of the dresser, thus resulting in a short tool life.
In the dresser of the present embodiment, the cutting edge component is less likely to be separated from the mount component, whereby the cutting edge component can be fixed to the mount component under such conditions that the load on the cutting edge component is smaller than that in the conventional art. Specifically, a sintering pressure can be reduced, a sintering temperature can be reduced, and a powder metal having a small thermal expansion coefficient can be used. Therefore, damage is less likely to be caused inside the cutting edge component during joining, whereby the dresser can have a long tool life.
A ratio (L1/M1) of a length L1 and a maximum value M1 is more than or equal to 2.1, where L1 (see
In the dresser of the present embodiment, when cutting edge component 1 is worn due to use of the dresser, cutting edge component 1 can be restored for use by polishing cutting edge component 1 and mount component 8 surrounding cutting edge component 1. When the ratio (L1/M1) of length L1 and maximum value M1 is more than or equal to 2.1, the number of times of restoring the dresser surface is increased, whereby the dresser can have a long tool life. The ratio (L1/M1) is more preferably more than or equal to 2.1 and is further preferably more than or equal to 2.3. Although the upper limit value of the ratio (L1/M1) is not set particularly, the upper limit is preferably less than or equal to 8, and is more preferably less than or equal to 7 in view of manufacturing.
For example, length L1 is preferably more than or equal to 0.5 mm and less than or equal to 7 mm, is more preferably more than or equal to 1 mm and less than or equal to 6 mm, and is further preferably more than or equal to 1.5 mm and less than or equal to 5 mm.
Maximum value M1 is preferably more than or equal to 0.05 mm and less than or equal to 3.5 mm, is more preferably more than or equal to 0.1 mm and less than or equal to 3.0 mm, and is further preferably more than or equal to 0.2 mm and less than or equal to 2.5 mm.
A difference (M1−M2) between maximum value M1 and a minimum value M2 is preferably more than or equal to 0.01 mm, where M1 represents the maximum value of diameter M of the circle having the area equal to the area of the cross section along the line normal to the insertion direction in the portion of cutting edge component 1 inserted in mount component 8, and M2 represents a minimum value of diameter M of the circle having the area equal thereto. Accordingly, even when the cutting edge component is worn to become short due to use of the dresser, the cutting edge component is less likely to be separated, whereby the dresser can have a longer tool life.
The difference (M1−M2) between M1 and M2 is more preferably more than or equal to 0.015 mm and less than or equal to 0.55 mm, and is further preferably more than or equal to 0.025 mm and less than or equal to 0.45 mm.
As shown in
As shown in
As shown in
The cutting edge component may include no exposed portion, and may be constituted only of inserted portion 1a. That is, the whole of cutting edge component 1 may be inserted in mount component 8.
Cutting edge component 1 preferably includes diamond or cubic boron nitride (hereinafter, also referred to as “cBN”). Since each of diamond and cBN has high hardness, the dresser can have an excellent wear resistance when each of these is used for the cutting edge component, whereby a longer tool life can be attained.
As the diamond, any of a single-crystal diamond, a polycrystal diamond, and a sintered diamond, which are generally available and widely applicable, can be used.
Examples of the single-crystal diamond includes natural diamond and synthetic single-crystal diamond. The synthetic single-crystal diamond is readily processed into a desired shape, and is suitable as a material of the cutting edge component of the present embodiment. A method for producing the synthetic single-crystal diamond is not limited particularly. For example, a synthetic single-crystal diamond produced using a high-pressure synthetic method or a vapor phase synthetic method can be used. When the cutting edge component is composed of the single-crystal diamond, the surface of the cutting edge component to come into contact with a workpiece preferably corresponds to a (100) plane, a (110) plane or a (211) plane.
The method for producing the polycrystal diamond is not limited particularly. For example, a polycrystal diamond can be used which is obtained by sintering, under very high temperature and pressure, a carbon material having a graphite type layer structure without adding a sintering aid or catalyst.
The method for producing the sintered diamond is not limited particularly. For example, a sintered diamond can be used which is obtained by sintering diamond particles using a metal binder such as cobalt.
As the cubic boron nitride, it is possible to use: a cBN sintered material obtained by sintering cBN particles using a metal binder such as Co (cobalt) or Al (aluminum); a cBN sintered material obtained by sintering cBN particles using a ceramic binder such as TiN (titanium nitride) or TiC (titanium carbide); a binderless cBN sintered material obtained by directly converting hexagonal boron nitride into cubic boron nitride without using a catalyst and sintering it; and the like.
The following describes a dresser according to a second embodiment with reference to
As shown in
Cutting edge component 11 includes an inserted portion 11a and an exposed portion 11b. Moreover, the cutting edge component may include no exposed portion and may be constituted only of inserted portion 11a.
In cutting edge component 11, inserted portion 11a includes: a first inserted portion 11a′ having a cross section along a line normal to the insertion direction, the cross section of first inserted portion 11a′ having the same shape as that of the cross section of the dressing surface; and a second inserted portion 11a″ that has a cross sectional area larger than that of first inserted portion 11a′ and that is located at the base end portion P side. That is, inserted portion 11a of cutting edge component 11 has one portion in which the area of the cross section along the line normal to the insertion direction is increased from the front end portion T side toward the base end portion P side in the insertion direction. When the cross sectional area is increased intermittently rather than continuously as in the present embodiment, the portion with an increased cross sectional area refers to a region on a boundary surface F between the portion (first inserted portion 11a′) that has a first cross sectional area and the portion (second inserted portion 11a″) that is located at the base end portion side relative to the portion having the first cross sectional area and that has a second cross sectional area larger than the first cross sectional area.
In the second embodiment, the side surface of inserted portion 11a has a protrusion at the base end portion P side in the insertion direction, thus providing a fitted portion between inserted portion 11a and mount component 18. Accordingly, cutting edge component 11 is less likely to be separated from mount component 18.
Furthermore, the cross sectional shape of first inserted portion 11a′ is constant. Hence, even in the case where the cutting edge component is restored by polishing the cutting edge component when the cutting edge portion is worn, the same cutting edge shape as that before the restoring can be maintained. Therefore, the dresser having been restored can also maintain the same cutting performance as the cutting performance before the restoring.
The following describes a dresser according to a third embodiment with reference to
As shown in
Cutting edge component 21 includes an inserted portion 21a and an exposed portion 21b. Moreover, the cutting edge component may include no exposed portion and may be constituted only of inserted portion 21a.
Cutting edge component 21 can be obtained by equally dividing a cutting edge component precursor 61 into two at a position indicated by a dotted line Z, for example. Cutting edge component precursor 61 has a prism shape such as one shown in
The area of inserted portion 21a of cutting edge component 21 at a cross section along a line normal to the insertion direction is monotonously increased as a distance is decreased between the cross section and base end portion P of inserted portion 21a along the insertion direction. Therefore, as with the first embodiment, even when the cutting edge component is worn to become short due to use of the dresser, the cutting edge component is not separated from the mount component, whereby the dresser can have a long tool life. Further, the cutting edge component and the mount component can be fixed under such conditions that a load on the cutting edge component is smaller than that in the conventional art, with the result that damage is less likely to be caused inside the cutting edge component during joining. Accordingly, the dresser can have a long tool life.
Cutting edge component 21 can be obtained by equally dividing one cutting edge component precursor having a prism shape into two. Therefore, manufacturing loss of the cutting edge component is less likely to occur and therefore the dresser of the third embodiment is advantageous in terms of manufacturing cost.
The following describes a dresser according to a fourth embodiment with reference to
As shown in
Cutting edge component 31 includes an inserted portion 31a and an exposed portion 31b. Moreover, the cutting edge component may include no exposed portion and may be constituted only of inserted portion 31a.
The area of the cross section of the portion of cutting edge component 31 inserted in mount component 38 along the line normal to the insertion direction is once decreased and then increased as a distance is decreased between the cross section and base end portion P of inserted portion 31a along the insertion direction. Specifically, inserted portion 31a has such a shape that a hatch 31e is formed at a portion of a quadrangular prism. The side surface of inserted portion 31a is provided with a recess resulting from hatch 31e, thereby providing a fitted portion between inserted portion 31a and mount component 38. Accordingly, cutting edge component 31 is less likely to be separated from mount component 38.
Furthermore, the cross sectional shape of inserted portion 31a is constant except for hatch 31e. Hence, even in the case where the cutting edge component is restored by polishing the cutting edge component when the cutting edge portion is worn, the same cutting edge shape as that before the restoring can be maintained. Therefore, the dresser having been restored can also maintain the same cutting performance as the cutting performance before the restoring.
The shape of the cutting edge component of the dresser according to each of the first to fourth embodiments is applicable to any of a point type single-point dresser, a blade type multi-point dresser, and a rotary type dresser. Even when the cutting edge component is worn to become short due to use of each of the dressers, the cutting edge component is not separated from the mount component, whereby the dresser can have a long tool life. Further, since it is not necessary to join the cutting edge component and the mount component firmly, damage is less likely to be caused inside the cutting edge component during the joining, whereby the dresser can have a long tool life.
The following describes an exemplary method for manufacturing a dresser according to each of the first to fifth embodiments.
A mount component provided with a recess at a dressing surface is prepared. A cutting edge component is inserted into the recess of the mount component, and joining material source powder, such as sintered alloy source material powder, is provided in a space between the mount component and the cutting edge component. The cutting edge component has such a shape that is illustrated in each of the first to fourth embodiments, for example.
The mount component having the cutting edge component and the joining material source powder disposed in the recess is heated at a temperature of more than or equal to 500° C. and less than or equal to 700° C. under a sintering pressure of 0.5 t/cm2 for more than or equal to 5 minutes and less than or equal to 10 minutes so as to sinter the joining material source powder, thereby joining the cutting edge component and the mount component to each other. In this way, a dresser is obtained.
In the conventional art, in order to avoid the cutting edge component from being separated from the mount component, the sintering is performed at a temperature of more than or equal to 800° C. and less than or equal to 900° C. under a sintering pressure of 1.0 to 1.5 t/cm2 for more than or equal to 10 minutes and less than or equal to 15 minutes. In such a sintering condition, a high-temperature and high-pressure load is applied to the cutting edge component and a thermal expansion difference becomes excessive between the cutting edge component and the joining material source powder during the sintering, with the result that damage may be caused inside the cutting edge component. According to the present embodiment, the sintering can be performed at a lower temperature under a lower pressure for a shorter period of time than those in the conventional art, whereby damage can be suppressed from being caused inside the cutting edge component.
The following describes the present embodiment more specifically by way of examples. However, the present embodiment is not limited by these examples.
In an Example 1, a point type single-point dresser having a shape shown in
The inserted portion of cutting edge component 41 has a quadrangular truncated pyramid shape. A cross section thereof along a line normal to an insertion direction is 0.6 mm square at a front end portion T, and is 1.12×0.6 mm square at a base end portion P. A length L1 of the inserted portion of cutting edge component 41 along the insertion direction is 3 mm. A maximum value M1 of a diameter of a circle having an area equal to that of the cross section of the inserted portion along the line normal to the insertion direction is 0.927 mm. A ratio (L1/M1) of length L1 and maximum value M1 is 3.24.
In a Comparative Example 1, a point type single-point dresser having the same configuration as that of Example 1 except for the shape of the cutting edge component is produced.
The inserted portion of the cutting edge component has a quadrangular prism shape. The cross sectional shape thereof along the line normal to the insertion direction is unchanged along the insertion direction. The inserted portion of the cutting edge component is of 0.6 mm square. Length L1 of the inserted portion of the cutting edge component is 3 mm. Maximum value M1 of the diameter of the circle having an area equal to that of the cross section of the inserted portion along the line normal to the insertion direction is 0.677 mm. The ratio (L1/M1) of length L1 and maximum value M1 is 4.43.
<Evaluation of Dresser>
For evaluation of tool lives, wet type dressing was performed using each of the dressers of Example 1 and Comparative Example 1 under the following conditions: a WA grinding stone was used as a target; a grinding stone peripheral speed was set to 30 m/sec; and a cut-in amount was set to 0.05 mm.
In the dresser of Example 1, even when a wear amount of the cutting edge component was 2 mm, the dressing could be performed normally without the cutting edge component being separated from the mount component.
In the dresser of Comparative Example 1, when a wear amount of the cutting edge component was 2 mm, the cutting edge component was separated from the mount component, with the result that the dressing could not be performed.
It was confirmed that the tool life of the dresser of Example 1 is longer than that of the dresser of Comparative Example 1.
In an Example 2, a point type single-point dresser having a shape shown in
The inserted portion of cutting edge component 41 has a quadrangular truncated pyramid shape. A cross section thereof along a line normal to an insertion direction is 1.1 mm square at a front end portion T, and is 1.31×1.1 mm square at a base end portion P. A length L1 of the inserted portion of cutting edge component 41 along the insertion direction is 3 mm. A maximum value M1 of a diameter of a circle having an area equal to that of the cross section of the inserted portion along the line normal to the insertion direction is 0.74 mm. A ratio (L1/M1) of length L1 and maximum value M1 is 2.21.
In a Comparative Example 2, a point type single-point dresser having the same configuration as that of Example 2 except for the shape of the cutting edge component is produced.
The inserted portion of the cutting edge component has a quadrangular prism shape. The cross sectional shape thereof along the line normal to the insertion direction is unchanged along the insertion direction. The inserted portion of the cutting edge component is of 1.1 mm square. Length L1 of the inserted portion of the cutting edge component is 3 mm. Maximum value M1 of the diameter of the circle having an area equal to that of the cross section of the inserted portion along the line normal to the insertion direction is 1.24 mm. The ratio (L1/M1) of length L1 and maximum value M1 is 2.42.
In a Comparative Example 3, a point type single-point dresser having the same configuration as that of Example 2 except for the shape of the cutting edge component is produced.
The inserted portion of the cutting edge component has a quadrangular truncated pyramid shape. The cross section thereof along the line normal to the insertion direction is 1.1 mm square at the front end portion, and is 1.625×1.1 mm square at the base end portion. Length L1 of the inserted portion of the cutting edge component is 3 mm. Maximum value M1 of the diameter of the circle having an area equal to that of the cross section of the inserted portion along the line normal to the insertion direction is 1.509 mm. The ratio (L1/M1) of length L1 and maximum value M1 is 1.99.
<Evaluation of Dresser>
For evaluation of tool lives, wet type dressing was performed using each of the dressers of Example 2, Comparative Example 2 and Comparative Example 3 under the following conditions: a WA grinding stone was used as a target; a grinding stone peripheral speed was set to 30 m/sec; and a cut-in amount was set to 0.05 mm.
In the dresser of Example 2, even when a wear amount of the cutting edge component was 2.2 mm, the dressing could be performed normally without the cutting edge component being separated from the mount component.
In the dresser of Comparative Example 2, when a wear amount of the cutting edge component was 2.2 mm, the cutting edge component was separated from the mount component, with the result that the dressing could not be performed.
In the dresser of Comparative Example 3, when a wear amount of the cutting edge component was 2.2 mm, the surface of the WA grinding stone serving as the target was melted to adhere thereto, with the result that the cutting edge portion fell off due to breakage. Accordingly, the dressing could not be continued.
It was confirmed that the tool life of the dresser of Example 2 is longer than that of the dresser of each of Comparative Examples 2 and 3.
Heretofore, the embodiments and examples of the present invention have been illustrated, but it has been initially expected to appropriately combine the configurations of the embodiments and examples and modify them in various manners.
The embodiments and examples disclosed herein are illustrative and non-restrictive in any respect. The scope of the present invention is defined by the terms of the claims, rather than the embodiments and examples described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1, 11, 21, 31, 41, 51, 61: cutting edge component; 2, 12, 22, 32, 42, 52, 62: mount component substrate; 3, 13, 23, 33: dresser; 7, 17, 27, 37, 47, 57, 67: joining material; 8, 18, 28, 38, 48, 58, 68: mount component; 43: point type single-point dresser; 53: blade type multi-point dresser; 63: rotary type dresser; P: base end portion; T: front end portion.
Number | Date | Country | Kind |
---|---|---|---|
2018-076822 | Apr 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/013137 | 3/27/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/198503 | 10/17/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7690442 | Portwood | Apr 2010 | B2 |
20060260846 | Portwood | Nov 2006 | A1 |
20110240376 | Chen | Oct 2011 | A1 |
20120152624 | Chen | Jun 2012 | A1 |
20200215664 | Sato | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
S60-39454 | Mar 1985 | JP |
H08-229818 | Sep 1996 | JP |
H10-15820 | Jan 1998 | JP |
2002-264014 | Sep 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20200215664 A1 | Jul 2020 | US |