This disclosure relates generally to medical treatment systems and, more particularly, but not by way of limitation, to absorbent dressings, systems, and methods for treating a tissue site with reduced pressure.
Clinical studies and practice have shown that reducing pressure in proximity to a tissue site can augment and accelerate growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but have proven particularly advantageous for treating wounds. Regardless of the etiology of a wound, whether trauma, surgery, or another cause, proper care of a wound is important to the outcome. Treatment of wounds or other tissue with reduced pressure may be commonly referred to as “negative-pressure therapy,” but is also known by other names, including “negative-pressure wound therapy,” “reduced-pressure therapy,” “vacuum therapy,” and “vacuum-assisted closure,” for example. Negative-pressure therapy may provide a number of benefits, including migration of epithelial and subcutaneous tissues, improved blood flow, and micro-deformation of tissue at a wound site. Together, these benefits can increase development of granulation tissue and reduce healing times.
While the clinical benefits of negative-pressure therapy are widely known, the cost and complexity of negative-pressure therapy can be a limiting factor in its application, and the development and operation of negative-pressure systems, components, and processes continues to present significant challenges to manufacturers, healthcare providers, and patients.
Shortcomings with certain aspects of tissue treatment dressings, systems, and methods are addressed as shown and described in a variety of illustrative, non-limiting example embodiments herein.
In some example embodiments, a system for treating a tissue site may include a dressing and a reduced-pressure source. The dressing may include a base layer, an adhesive, a sealing member, at least one wicking layer, and an absorbent layer. The base layer may include a periphery surrounding a central portion and a plurality of apertures disposed through the periphery and the central portion. The adhesive may be configured to extend through the apertures at least in the periphery of the base layer to contact tissue surrounding the tissue site. The sealing member may include a periphery and a central portion. The periphery of the sealing member may be positioned proximate to the periphery of the base layer. The central portion of the sealing member and the central portion of the base layer may define an enclosure. The central portion of the sealing member may include a breathable zone having a higher vapor permeability than the periphery of the sealing member. The at least one wicking layer and the absorbent layer may be disposed in the enclosure. The reduced-pressure source may be configured to be coupled in fluid communication with the dressing.
Further, in some example embodiments, a dressing for treating a tissue site may include a base layer, an adhesive, a sealing member, a first wicking layer, a second wicking layer, and an absorbent layer. The base layer may have a periphery surrounding a central portion and a plurality of apertures disposed through the periphery and the central portion. The adhesive may be configured to extend through the apertures at least in the periphery of the base layer to contact tissue surrounding the tissue site. The sealing member may have a periphery and a central portion, and the periphery of the sealing member may be positioned proximate to the periphery of the base layer. The central portion of the sealing member and the central portion of the base layer may define an enclosure. The central portion of the sealing member may include a breathable zone having a higher vapor permeability than the periphery of the sealing member. The first wicking layer and the second wicking layer may be disposed in the enclosure. The absorbent layer may be positioned in fluid communication between the first wicking layer and the second wicking layer.
Further, in some example embodiments, a system for treating a tissue site may include a dressing, a conduit interface, and a reduced-pressure source. The dressing may be adapted to distribute reduced pressure to the tissue site and to store fluid extracted from the tissue site. The dressing may include a base layer, an adhesive, a sealing member, a first wicking layer, a second wicking layer, and an absorbent layer. The base layer may include a periphery surrounding a central portion and a plurality of apertures disposed through the periphery and the central portion. The apertures in the periphery of the base layer may be larger than the apertures in the central portion of the base layer. The periphery of the base layer may be configured to surround the tissue site, and the apertures in the base layer may be configured to be in fluid communication with the tissue site and the tissue surrounding the tissue site. The adhesive may be configured to extend through the apertures at least in the periphery of the base layer to contact tissue surrounding the tissue site. The sealing member may have a periphery and a central portion, and the periphery of the sealing member may be positioned proximate to the periphery of the base layer. The central portion of the sealing member and the central portion of the base layer may define an enclosure. The central portion of the sealing member may include a breathable zone having a higher vapor permeability than the periphery of the sealing member. The first wicking layer and the second wicking layer may be disposed in the enclosure. The absorbent layer may be positioned in fluid communication between the first wicking layer and the second wicking layer. The conduit interface may be configured to be positioned proximate to the sealing member and in fluid communication with the enclosure. The reduced-pressure source may be adapted to be coupled in fluid communication with the conduit interface to provide reduced pressure to the dressing.
Further, in some example embodiments, a dressing for treating a tissue site may include a sealing member. The sealing member may include a periphery and a central portion. The central portion of the sealing member may include a breathable zone having a higher vapor permeability than the periphery of the sealing member.
Other aspects, features, and advantages of the illustrative example embodiments will become apparent with reference to the drawings and detailed description that follow.
The following description of example embodiments enables a person skilled in the art to make and use the subject matter set forth in the appended claims. Certain details already known in the art may be omitted. Therefore, the following detailed description is illustrative and non-limiting.
Referring to the drawings,
Further, the tissue site 104 may be the bodily tissue of any human, animal, or other organism, including bone tissue, adipose tissue, muscle tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, ligaments, or any other tissue. Treatment of tissue site 104 may include removal of fluids, e.g., exudate or ascites.
Continuing with
A material with a higher or lower density than GranuFoam® material may be desirable for the interface manifold 120 depending on the application. Among the many possible materials, the following may be used: GranuFoam® material, Foamex® technical foam (www.foamex.com), a molded bed of nails structures, a patterned grid material such as those manufactured by Sercol Industrial Fabrics, 3D textiles such as those manufactured by Baltex of Derby, U.K., a gauze, a flexible channel-containing member, a graft, etc. In some instances, ionic silver may be added to the interface manifold 120 by, for example, a micro bonding process. Other substances, such as anti-microbial agents, may be added to the interface manifold 120 as well.
In some embodiments, the interface manifold 120 may comprise a porous, hydrophobic material. The hydrophobic characteristics of the interface manifold 120 may prevent the interface manifold 120 from directly absorbing fluid, such as exudate, from the tissue site 104, but allow the fluid to pass through.
Continuing with
Referring to
The central portion 156 of the base layer 132 may be configured to be positioned proximate to the tissue site 104, and the periphery 152 of the base layer 132 may be configured to be positioned proximate to tissue surrounding the tissue site 104. In some embodiments, the base layer 132 may cover the interface manifold 120 and tissue surrounding the tissue site 104 such that the central portion 156 of the base layer 132 is positioned adjacent to or proximate to the interface manifold 120, and the periphery 152 of the base layer 132 is positioned adjacent to or proximate to tissue surrounding the tissue site 104. In this manner, the periphery 152 of the base layer 132 may surround the interface manifold 120. Further, the apertures 160 in the base layer 132 may be in fluid communication with the interface manifold 120 and tissue surrounding the tissue site 104.
The apertures 160 in the base layer 132 may have any shape, such as, for example, circles, squares, stars, ovals, polygons, slits, complex curves, rectilinear shapes, triangles, or other shapes. The apertures 160 may be formed by cutting, by application of local RF energy, or other suitable techniques for forming an opening. As shown in
Referring to
As shown in
The base layer 132 may be a soft, pliable material suitable for providing a fluid seal with the tissue site 104 as described herein. For example, the base layer 132 may comprise a silicone gel, a soft silicone, hydrocolloid, hydrogel, polyurethane gel, polyolefin gel, hydrogenated styrenic copolymer gels, a foamed gel, a soft closed cell foam such as polyurethanes and polyolefins coated with an adhesive described below, polyurethane, polyolefin, or hydrogenated styrenic copolymers. The base layer 132 may have a thickness between about 500 microns (μm) and about 1000 microns (μm). In some embodiments, the base layer 132 has a stiffness between about 5 Shore OO and about 80 Shore OO. The base layer 132 may be comprised of hydrophobic or hydrophilic materials.
In some embodiments (not shown), the base layer 132 may be a hydrophobic-coated material. For example, the base layer 132 may be formed by coating a spaced material, such as, for example, woven, nonwoven, molded, or extruded mesh with a hydrophobic material. The hydrophobic material for the coating may be a soft silicone, for example. In this manner, the adhesive 136 may extend through openings in the spaced material analogous to the apertures 160 described below.
The adhesive 136 may be in fluid communication with the apertures 160 in at least the periphery 152 of the base layer 132. In this manner, the adhesive 136 may be in fluid communication with the tissue surrounding the tissue site 104 through the apertures 160 in the base layer 132. As described below and shown in
At least one of the apertures 160a in the periphery 152 of the base layer 132 may be positioned at the edges 159 of the periphery 152 and may have an interior cut open or exposed at the edges 159 that is in fluid communication in a lateral direction with the edges 159. The lateral direction may refer to a direction toward the edges 159 and in the same plane as the base layer 132. As shown in
Continuing with
The adhesive 136 may be a medically-acceptable adhesive. The adhesive 136 may also be flowable. For example, the adhesive 136 may comprise an acrylic adhesive, rubber adhesive, high-tack silicone adhesive, polyurethane, or other adhesive substance. In some embodiments, the adhesive 136 may be a pressure-sensitive adhesive comprising an acrylic adhesive with coating weight of 15 grams/m2 (gsm) to 70 grams/m2 (gsm). The adhesive 136 may be a layer having substantially the same shape as the periphery 152 of the base layer 132 as shown in
Factors that may be utilized to control the adhesion strength of the dressing 124 may include the diameter and number of the apertures 160 in the base layer 132, the thickness of the base layer 132, the thickness and amount of the adhesive 136, and the tackiness of the adhesive 136. An increase in the amount of the adhesive 136 extending through the apertures 160 generally corresponds to an increase in the adhesion strength of the dressing 124. A decrease in the thickness of the base layer 132 generally corresponds to an increase in the amount of adhesive 136 extending through the apertures 160. Thus, the diameter and configuration of the apertures 160, the thickness of the base layer 132, and the amount and tackiness of the adhesive utilized may be varied to provide a desired adhesion strength for the dressing 124. For example, the thickness of the base layer 132 may be about 200 microns, the adhesive layer 136 may have a thickness of about 30 microns and a tackiness of 2000 grams per 25 centimeter wide strip, and the diameter of the apertures 160a in the base layer 132 may be about 10 millimeters.
In some embodiments, the tackiness of the adhesive 136 may vary in different locations of the base layer 132. For example, in locations of the base layer 132 where the apertures 160 are comparatively large, such as the apertures 160a, the adhesive 136 may have a lower tackiness than other locations of the base layer 132 where the apertures 160 are smaller, such as the apertures 160c. In this manner, locations of the base layer 132 having larger apertures 160 and lower tackiness adhesive 136 may have an adhesion strength comparable to locations having smaller apertures 160 and higher tackiness adhesive 136.
Clinical studies have shown that the configuration described herein for the base layer 132 and the adhesive 136 may reduce the occurrence of blistering, erythema, and leakage when in use. Such a configuration may provide, for example, increased patient comfort and increased durability of the dressing 124.
Referring to the embodiments of
Continuing with
The sealing member 140 may be formed from any material that allows for a fluid seal. A fluid seal is a seal adequate to maintain reduced pressure at a desired site given the particular reduced-pressure source or system involved. The sealing member 140 may comprise, for example, one or more of the following materials: hydrophilic polyurethane; cellulosics; hydrophilic polyamides; polyvinyl alcohol; polyvinyl pyrrolidone; hydrophilic acrylics; hydrophilic silicone elastomers; an INSPIRE 2301 material from Expopack Advanced Coatings of Wrexham, United Kingdom having, for example, an MVTR (inverted cup technique) of 14400 g/m2/24 hours and a thickness of about 30 microns; a thin, uncoated polymer drape; natural rubbers; polyisoprene; styrene butadiene rubber; chloroprene rubber; polybutadiene; nitrile rubber; butyl rubber; ethylene propylene rubber; ethylene propylene diene monomer; chlorosulfonated polyethylene; polysulfide rubber; polyurethane (PU); EVA film; co-polyester; silicones; a silicone drape; a 3M Tegaderm® drape; a polyurethane (PU) drape such as one available from Avery Dennison Corporation of Pasadena, California; polyether block polyamide copolymer (PEBAX), for example, from Arkema, France; Expopack 2327; or other appropriate material.
The sealing member 140 may be vapor permeable and/or liquid impermeable, thereby allowing vapor and inhibiting liquids from exiting the sealed space 174 provided by the dressing 124. In some embodiments, the sealing member 140 may be a flexible, breathable film, membrane, or sheet having a high MVTR of, for example, at least about 300 g/m2 per 24 hours. In other embodiments, a low or no vapor transfer drape might be used. The sealing member 140 may comprise a range of medically suitable films having a thickness up to about 50 microns (μm).
Referring to
In some embodiments, the breathable zone 202 may include or be formed of an evaporative or breathable layer, cover, or film, such as a vapor permeable and liquid impermeable film, which may have a thickness of 10 microns (μm) to 30 microns (μm). In some embodiments, the breathable zone 202 may include or be formed of a polyurethane film that is non-adhesive or free of any adhesive that may reduce or inhibit breathability. For example, in some embodiments, the adhesive 136 may be disposed on a surface of at least the periphery 164 of the sealing member 140 that is configured to face the base layer 132, and the breathable zone 202 may be free of the adhesive 136. The breathable zone 202 may be formed of or include similar materials as described herein for the sealing member 140. However, compared to other portions of the sealing member 140, the breathable zone 202 may, for example, have a higher Moisture Vapor Transfer Rate (MVTR), a reduced thickness, surface features for enhanced evaporation and breathability, or be entirely or substantially free of adhesive as described herein.
The sealing member 140 may include the sealing member aperture 170 and a zone opening 206 disposed through the sealing member 140. The reduced-pressure source 128 may be configured to be coupled in fluid communication with the enclosure 172 through the sealing member aperture 170. The breathable zone 202 may be positioned at or within the zone opening 206 and exposed to an ambient environment external to the sealing member 140 and the dressing 124 through or at the zone opening 206. In some embodiments, the sealing member aperture 170 and the zone opening 206 may be positioned at opposing ends of the sealing member 140.
In some embodiments, a border or a perimeter 207 of the breathable zone 202 may be coupled to or at a border or a perimeter 208 of the zone opening 206. A portion of the perimeter 207 may overlap a portion of the perimeter 208 to provide a connecting or coupling surface or interface between the breathable zone 202 and the zone opening 206 of the sealing member 140. For example, the breathable zone 202 may be coupled to or at the perimeter 208 of the zone opening 206 on an exterior facing surface 210 of the sealing member 140 by an adhesive gasket 212 as shown in
In some embodiments, the breathable zone 202 may have an interior facing surface 216 configured to be in direct contact with or directly exposed to the interior of the dressing 124, such as the enclosure 172, and moisture that may be present in the enclosure 172. Further, the breathable zone 202 may have an exterior facing surface 218 configured to be in direct contact with or directly exposed to an ambient environment external to the dressing 124 and the sealing member 140. In some embodiments, the breathable zone 202 may be positioned between the interior facing surface 214 of the sealing member 140 and an absorbent layer 184, shown as part of the fluid management assembly 144 in
In some embodiments, the breathable zone 202 may be coupled to components of the fluid management assembly 144, such as one or more wicking layers or the absorbent layer 184 shown in
Referring more specifically to
Referring more specifically to
The configuration of the breathable zone 202 described in the example embodiments herein may increase or improve the total fluid handling capability or fluid storage capacity of the dressing 124 while maintaining the structural integrity of the dressing 124. For example, the breathable zone 202 may be configured as described in the example embodiments to be highly breathable, thereby promoting the evaporation of fluid from within the dressing 124 through the breathable zone 202 to the environment exterior to the dressing 124.
Referring to
In some embodiments, a peripheral portion 186 of the first wicking layer 176 may be coupled to a peripheral portion 187 of the second wicking layer 180 to define a wicking layer enclosure 188 between the first wicking layer 176 and the second wicking layer 180. In some exemplary embodiments, the wicking layer enclosure 188 may surround or otherwise encapsulate the absorbent layer 184 between the first wicking layer 176 and the second wicking layer 180.
Referring more specifically to
Each of the wicking layers 176, 180, and 189 may include a fluid distribution side 220 and a fluid acquisition side 234. The fluid distribution side 220 may be positioned facing an opposite direction from the fluid acquisition side 234. The fluid distribution side 220 may include longitudinal fibers 238 that define a grain structure. The longitudinal fibers 234 may be oriented substantially in a longitudinal direction along a length of the wicking layers 176, 180, and 189. The fluid acquisition side 234 may include vertical fibers 240, which are shown enlarged in
In some embodiments, the absorbent layer 184 may be a hydrophilic material adapted to absorb fluid from, for example, the tissue site 104. Materials suitable for the absorbent layer 184 may include Luquafleece® material, Texsus FP2326, BASF 402C, Technical Absorbents 2317 available from Technical Absorbents (www.techabsorbents.com), sodium polyacrylate super absorbers, cellulosics (carboxy methyl cellulose and salts such as sodium CMC), or alginates. Materials suitable for the first wicking layer 176 and the second wicking layer 180 may include any material having a grain structure capable of wicking fluid as described herein, such as, for example, Libeltex TDL2 80 gsm.
The fluid management assembly 144 may be a pre-laminated structure manufactured at a single location or individual layers of material stacked upon one another as described above. Individual layers of the fluid management assembly 144 may be bonded or otherwise secured to one another without adversely affecting fluid management by, for example, utilizing a solvent or non-solvent adhesive, or by thermal welding. Further, the fluid management assembly 144 may be coupled to the border 161 of the base layer 132 in any suitable manner, such as, for example, by a weld or an adhesive. The border 161 being free of the apertures 160 as described above may provide a flexible barrier between the fluid management assembly 144 and the tissue site 104 for enhancing comfort.
In some embodiments, the enclosure 172 defined by the base layer 132 and the sealing member 140 may include an anti-microbial layer 190. The addition of the anti-microbial layer 190 may reduce the probability of excessive bacterial growth within the dressing 124 to permit the dressing 124 to remain in place for an extended period. The anti-microbial layer 190 may be, for example, an additional layer included as a part of the fluid management assembly 144 as depicted in
Referring to
The conduit interface 148 may comprise a medical-grade, soft polymer or other pliable material. As non-limiting examples, the conduit interface 148 may be formed from polyurethane, polyethylene, polyvinyl chloride (PVC), fluorosilicone, or ethylene-propylene, etc. In some illustrative, non-limiting embodiments, conduit interface 148 may be molded from DEHP-free PVC. The conduit interface 148 may be formed in any suitable manner such as by molding, casting, machining, or extruding. Further, the conduit interface 148 may be formed as an integral unit or as individual components and may be coupled to the dressing 124 by, for example, adhesive or welding.
In some embodiments, the conduit interface 148 may be formed of an absorbent material having absorbent and evaporative properties. The absorbent material may be vapor permeable and liquid impermeable, thereby being configured to permit vapor to be absorbed into and evaporated from the material through permeation while inhibiting permeation of liquids. The absorbent material may be, for example, a hydrophilic polymer such as a hydrophilic polyurethane. Although the term hydrophilic polymer may be used in the illustrative embodiments that follow, any absorbent material having the properties described herein may be suitable for use in the system 102. Further, the absorbent material or hydrophilic polymer may be suitable for use in various components of the system 102 as described herein.
The use of such a hydrophilic polymer for the conduit interface 148 may permit liquids in the conduit interface 148 to evaporate, or otherwise dissipate, during operation. For example, the hydrophilic polymer may allow the liquid to permeate or pass through the conduit interface 148 as vapor, in a gaseous phase, and evaporate into the atmosphere external to the conduit interface 148. Such liquids may be, for example, condensate or other liquids. Condensate may form, for example, as a result of a decrease in temperature within the conduit interface 148, or other components of the system 102, relative to the temperature at the tissue site 104. Removal or dissipation of liquids from the conduit interface 148 may increase visual appeal and prevent odor. Further, such removal of liquids may also increase efficiency and reliability by reducing blockages and other interference with the components of the system 102.
Similar to the conduit interface 148, the liquid trap 192, and other components of the system 102 described herein, may also be formed of an absorbent material or a hydrophilic polymer. The absorptive and evaporative properties of the hydrophilic polymer may also facilitate removal and dissipation of liquids residing in the liquid trap 192, and other components of the system 102, by evaporation. Such evaporation may leave behind a substantially solid or gel-like waste. The substantially solid or gel-like waste may be cheaper to dispose than liquids, providing a cost savings for operation of the system 102. The hydrophilic polymer may be used for other components in the system 102 where the management of liquids is beneficial.
In some embodiments, the absorbent material or hydrophilic polymer may have an absorbent capacity in a saturated state that is substantially equivalent to the mass of the hydrophilic polymer in an unsaturated state. The hydrophilic polymer may be fully saturated with vapor in the saturated state and substantially free of vapor in the unsaturated state. In both the saturated state and the unsaturated state, the hydrophilic polymer may retain substantially the same physical, mechanical, and structural properties. For example, the hydrophilic polymer may have a hardness in the unsaturated state that is substantially the same as a hardness of the hydrophilic polymer in the saturated state. The hydrophilic polymer and the components of the system 102 incorporating the hydrophilic polymer may also have a size that is substantially the same in both the unsaturated state and the saturated state. Further, the hydrophilic polymer may remain dry, cool to the touch, and pneumatically sealed in the saturated state and the unsaturated state. The hydrophilic polymer may also remain substantially the same color in the saturated state and the unsaturated state. In this manner, this hydrophilic polymer may retain sufficient strength and other physical properties to remain suitable for use in the system 102. An example of such a hydrophilic polymer is offered under the trade name Techophilic HP-93A-100, available from The Lubrizol Corporation of Wickliffe, Ohio, United States. Techophilic HP-93A-100 is an absorbent hydrophilic thermoplastic polyurethane capable of absorbing 100% of the unsaturated mass of the polyurethane in water and having a durometer or Shore Hardness of about 83 Shore A.
The conduit interface 148 may carry an odor filter 194 adapted to substantially preclude the passage of odors from the tissue site 104 out of the sealed space 174. Further, the conduit interface 148 may carry a primary hydrophobic filter 195 adapted to substantially preclude the passage of liquids out of the sealed space 174. The odor filter 194 and the primary hydrophobic filter 195 may be disposed in the conduit interface 148 or other suitable location such that fluid communication between the reduced-pressure source 128, or optional therapy unit 130, and the dressing 124 is provided through the odor filter 194 and the primary hydrophobic filter 195. In some embodiments, the odor filter 194 and the primary hydrophobic filter 195 may be secured within the conduit interface 148 in any suitable manner, such as by adhesive or welding. In other embodiments, the odor filter 194 and the primary hydrophobic filter 195 may be positioned in any exit location in the dressing 124 that is in fluid communication with the atmosphere, the reduced-pressure source 128, or the optional therapy unit 130. The odor filter 194 may also be positioned in any suitable location in the system 102 that is in fluid communication with the tissue site 104.
The odor filter 194 may be comprised of a carbon material in the form of a layer or particulate. For example, the odor filter 194 may comprise a woven carbon cloth filter such as those manufactured by Chemviron Carbon, Ltd. of Lancashire, United Kingdom (www.chemvironcarbon.com). The primary hydrophobic filter 195 may be comprised of a material that is liquid impermeable and vapor permeable. For example, the primary hydrophobic filter 195 may comprise a material manufactured under the designation MMT-314 by W. L. Gore & Associates, Inc. of Newark, Del., United States, or similar materials. The primary hydrophobic filter 195 may be provided in the form of a membrane or layer.
Continuing with
As used herein, “reduced pressure” generally refers to a pressure less than the ambient pressure at a tissue site being subjected to treatment. Typically, this reduced pressure will be less than the atmospheric pressure. The reduced pressure may also be less than a hydrostatic pressure at a tissue site. Unless otherwise indicated, values of pressure stated herein are gauge pressures. While the amount and nature of reduced pressure applied to a tissue site will typically vary according to the application, the reduced pressure will typically be between −5 mm Hg and −500 mm Hg, and more typically in a therapeutic range between −100 mm Hg and −200 mm Hg.
The reduced pressure delivered may be constant or varied (patterned or random), and may be delivered continuously or intermittently. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure applied to the tissue site may be more than the pressure normally associated with a complete vacuum. Consistent with the use herein, an increase in reduced pressure or vacuum pressure typically refers to a relative reduction in absolute pressure. An increase in reduced pressure corresponds to a reduction in pressure (more negative relative to ambient pressure) and a decrease in reduced pressure corresponds to an increase in pressure (less negative relative to ambient pressure).
As shown in
The conduit 196 may have a secondary hydrophobic filter 199 disposed in the internal lumen 197 such that fluid communication between the reduced-pressure source 128 and the dressing 124 is provided through the secondary hydrophobic filter 199. The secondary hydrophobic filter 199 may be, for example, a porous, sintered polymer cylinder sized to fit the dimensions of the internal lumen 197 to substantially preclude liquid from bypassing the cylinder. The secondary hydrophobic filter 199 may also be treated with an absorbent material adapted to swell when brought into contact with liquid to block the flow of the liquid. The secondary hydrophobic filter 199 may be positioned at any location within the internal lumen 197. However, positioning the secondary hydrophobic filter 199 within the internal lumen 197 closer toward the reduced-pressure source 128, rather than the dressing 124, may allow a user to detect the presence of liquid in the internal lumen 197.
In some embodiments, the conduit 196 and the coupling 198 may be formed of an absorbent material or a hydrophilic polymer as described above for the conduit interface 148. In this manner, the conduit 196 and the coupling 198 may permit liquids in the conduit 196 and the coupling 198 to evaporate, or otherwise dissipate, as described above for the conduit interface 148. The conduit 196 and the coupling 198 may be, for example, molded from the hydrophilic polymer separately, as individual components, or together as an integral component. Further, a wall of the conduit 196 defining the internal lumen 197 may be extruded from the hydrophilic polymer. The conduit 196 may be less than about 1 meter in length, but may have any length to suit a particular application. More specifically, a length of about 1 foot or 304.8 millimeters may provide enough absorbent and evaporative surface area to suit many applications, and may provide a cost savings compared to longer lengths. If an application requires additional length for the conduit 196, the absorbent hydrophilic polymer may be coupled in fluid communication with a length of conduit formed of a non-absorbent hydrophobic polymer to provide additional cost savings.
In operation of the system 102 according to some illustrative embodiments, the interface manifold 120 may be disposed against or proximate to the tissue site 104. The dressing 124 may then be applied over the interface manifold 120 and the tissue site 104 to form the sealed space 174. Specifically, the base layer 132 may be applied covering the interface manifold 120 and the tissue surrounding the tissue site 104. The materials described above for the base layer 132 have a tackiness that may hold the dressing 124 initially in position. The tackiness may be such that if an adjustment is desired, the dressing 124 may be removed and reapplied. Once the dressing 124 is in the desired position, a force may be applied, such as by hand pressing, on a side of the sealing member 140 opposite the tissue site 104. The force applied to the sealing member 140 may cause at least some portion of the adhesive 136 to penetrate or extend through the plurality of apertures 160 and into contact with tissue surrounding the tissue site 104, such as the epidermis 106, to releaseably adhere the dressing 124 about the tissue site 104. In this manner, the configuration of the dressing 124 described above may provide an effective and reliable seal against challenging anatomical surfaces, such as an elbow or heal, at and around the tissue site 104. Further, the dressing 124 permits re-application or re-positioning to, for example, correct air leaks caused by creases and other discontinuities in the dressing 124 and the tissue site 104. The ability to rectify leaks may increase the reliability of the therapy and reduce power consumption.
As the dressing 124 comes into contact with fluid from the tissue site 104, the fluid moves through the apertures 160 toward the fluid management assembly 144. The fluid management assembly 144 wicks or otherwise moves the fluid through the interface manifold 120 and away from the tissue site 104. As described above, the interface manifold 120 may be adapted to communicate fluid from the tissue site 104 rather than store the fluid. Thus, the fluid management assembly 144 may be more absorbent than the interface manifold 120. The fluid management assembly 144 being more absorbent than the interface manifold 120 provides an absorbent gradient through the dressing 124 that attracts fluid from the tissue site 104 or the interface manifold 120 to the fluid management assembly 144. Thus, in some embodiments, the fluid management assembly 144 may be adapted to wick, pull, draw, or otherwise attract fluid from the tissue site 104 through the interface manifold 120. In the fluid management assembly 144, the fluid initially comes into contact with the first wicking layer 176. The first wicking layer 176 may distribute the fluid laterally along the surface of the first wicking layer 176 as described above for absorption and storage within the absorbent layer 184. Similarly, fluid coming into contact with the second wicking layer 180 may be distributed laterally along the surface of the second wicking layer 180 for absorption within the absorbent layer 184. As fluid enters the fluid management assembly 144 and the enclosure 172, moisture carried by or associated with the fluid is evaporated through the breathable zone 202, thereby extending the useable life and fluid handling capacity of the dressing 124 without compromising structural integrity.
Referring to
Similar to the internal lumen 197 of the conduit 196, the primary lumen 310 may be coupled in fluid communication between the reduced-pressure source 128 and the dressing 124 as described above. In some embodiments, the primary lumen 310 may be coupled in fluid communication between the conduit interface 148 and the reduced-pressure source 128. Further, analogous to the internal lumen 197, reduced pressure may be provided through the primary lumen 310 from the reduced-pressure source 128 to the dressing 124. In some embodiments, the primary lumen 310 may be configured to extract fluid such as exudate from the tissue site 104. The secondary lumens 318 may be coupled in fluid communication between the therapy unit 130 and the dressing 124. In some embodiments, the at least one secondary lumen 318 may be coupled in fluid communication between the conduit interface 148 and the therapy unit 130. Further, the secondary lumens 318 may be in fluid communication with the primary lumen 310 at the dressing 124 and configured to provide a reduced-pressure feedback signal from the dressing 124 to the therapy unit 130. For example, the secondary lumens 318 may be in fluid communication with the primary lumen 310 at the conduit interface 148 or other component of the dressing 124.
The multi-lumen conduit 302a may be comprised of an absorbent material or hydrophilic polymer, such as, for example, the absorbent material or the hydrophilic polymer described above in connection with the conduit interface 148, the conduit 196, and the coupling 198. The absorbent material or the hydrophilic polymer may be vapor permeable and liquid impermeable. In some embodiments, at least a portion of the wall 314 and the external surface 306 of the multi-lumen conduit 302a may be comprised of the absorbent material or the hydrophilic polymer. In this manner, the multi-lumen conduit 302a may permit liquids, such as condensate, in the multi-lumen conduit 302a to evaporate, or otherwise dissipate, as described above. For example, the absorbent material or the hydrophilic polymer may allow the liquid to pass through the multi-lumen conduit 302a as vapor, in a gaseous phase, and evaporate into the atmosphere external to the multi-lumen conduit 302a. Liquids such as exudate from the tissue site 104 may also be evaporated or dissipated through the multi-lumen conduit 302a in the same manner. This feature may be advantageous when the optional therapy unit 130 is used for monitoring and controlling reduced pressure at the tissue site 104. For example, liquid present in the secondary lumens 318 may interfere with a reduced-pressure feedback signal being transmitted to the therapy unit 130 through the secondary lumens 318. The use of the hydrophilic polymer for the multi-lumen conduit 302a may permit removal of such liquid for enhancing the visual appeal, reliability, and efficiency of the system 102. After evaporation of liquid in the multi-lumen conduit 302a, other blockages from, for example, desiccated exudate, solids, or gel-like substances that were carried by the evaporated liquid may be visible for further remediation. Further, the use of the hydrophilic polymer as described herein may reduce the occurrence of skin damage caused by moisture buildup between components of the system 102, such as the multi-lumen conduit 302a, and the skin of a patient.
Referring to
The appended claims set forth novel and inventive aspects of the subject matter in this disclosure. While shown in several illustrative embodiments, a person having ordinary skill in the art will recognize that the systems, apparatuses, and methods described herein are susceptible to various changes and modifications. Features may be emphasized in some example embodiments while being omitted in others, but a person of skill in the art will appreciate that features described in the context of one example embodiment may be readily applicable to other example embodiments. Further, certain features, elements, or aspects may be omitted from this disclosure if not necessary to distinguish the novel and inventive features from what is already known to a person having ordinary skill in the art. Features, elements, and aspects described herein may also be combined or replaced by alternative features serving the same, equivalent, or similar purpose without departing from the scope of the invention defined by the appended claims. Moreover, descriptions of various alternatives using terms such as “or” do not require mutual exclusivity unless clearly required by the context, and the indefinite articles “a” or “an” do not limit the subject to a single instance unless clearly required by the context.
The present application claims the benefit, under 35 USC § 119(e), of the filing of U.S. Provisional Patent Application Ser. No. 62/720,595, entitled “Dressing and System with Improved Total Fluid Handling,” filed Aug. 21, 2018, which is incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
62720595 | Aug 2018 | US |