The present disclosure relates to enteral and vesical access devices, and more specifically to a multi-component dressing assembly and related methods.
Certain individuals require feeding assistance due to swallowing disorders, issues gaining weight, poor hydration, or congenital anomalies within their digestive system. Others may require intermittent or continuous access to the urinary bladder for irrigation, decompression or drainage. A device that helps in the management of these unfavorable medical conditions is known as a gastrostomy tube (g-tube), gastrostomy button (g-button), gastrojejunostomy button (gj-button), jejunostomy device or button (j-button), enteral access device (EAD), or vesicostomy button. These devices allow food, fluids, nutritional supplements, and medications to be delivered directly into the stomach or small bowel. In other settings, such as anorectal anomalies or chronic constipation, these devices may be inserted into the cecum (proximal colon) to enable antegrade enemas. In still other settings these devices may be used for gastric, intestinal or bladder decompression. Regardless of their location in the intestinal tract, these devices are generally used at a minimum for several months, but in some cases are required for years or a patient's entire life.
Even though the placement of an enteral access device is a straightforward procedure, there are several bothersome postoperative complications that may arise. Most common are the formation of granulation tissue and leakage of gastric, intestinal or urinary contents around the device. These issues arise from a lack of securement between the device and the patient. The tube is free to rotate and move both laterally and vertically within the stoma. This movement exposes the button to external forces (clothes catching, accidental hand swipe, etc.) and human-related forces (twisting of the abdomen, skin folding, coughing, etc.), which can cause friction within the lumen of the stoma and on the surface of the skin. These forces can similarly lead to compression of the balloon of the device against the inner wall of the stomach, and shearing between the device and the patient's skin, which may widen the stoma. The current securement technique that doctors and nurses recommend is the “tic-tac-toe” taping method. This involves sliding a 2×2-inch gauze pad between the hub of the device and the patient's skin, in order to absorb leakage from the intestine, bladder or the tract itself. The dressing is then taped around the perimeter of the tube's entry hole to form a tic-tac-toe grid using tape (e.g., hypo-allergenic tape). Unfortunately, this method has not proven to be reliable or effective in stabilizing these devices.
In various embodiments, the present disclosure provides a multi-component dressing for securing an enteral or vesical access device, but which for simplicity may be called an enteral access device (EAD). The dressing may include an adhesive layer having a first surface for at least partially contacting a skin surface and a second surface opposing the first surface. The dressing may also include an absorptive layer (in some embodiments coupled to the first surface, in other embodiments disposed in a securement base and replaceable), a securement base coupled to the second surface for securing the hub of the enteral access device, and a perimetrically closed aperture defined in and extending through each of the adhesive layer, the absorptive layer and the securement base. The aperture may be configured so that the enteral access device can be accessed for feeding and the delivery of fluids and medications, while maintaining securement of the device.
In various embodiments, an outer perimeter of the absorptive layer is smaller than an outer perimeter of the adhesive layer. In various embodiments, an outer perimeter of the securement base is smaller than an outer perimeter of the adhesive layer. In various embodiments, a perimeter of the aperture remains substantially constant through each of the adhesive layer, the absorptive layer and the securement base. In various embodiments, the securement base includes a plurality of holes for receiving a lid of the enteral access device. In various embodiments, the adhesive layer absorbs and disperses forces applied to the enteral access device. The securement base may be rigid, semi-rigid or flexible, and the securement base may be configured to absorb and disperse forces applied to the enteral access device. In various embodiments, the securement base extends to the upper level of the hub. In various embodiments, the securement base provides three-dimensional stability to the hub of the enteral access device.
Also disclosed herein, according to various embodiments, is another implementation of a dressing for securing an enteral or vesical access device. The dressing may include an adhesive layer having a first surface for at least partially contacting a skin surface and a second surface opposing the first surface. The dressing may also include a lower base coupled to the adhesive layer, the lower base defining an opening and an absorbent member disposed in the opening of the lower base. The absorbent member may define an aperture through which at least a portion of the enteral access device is configured to extend. The dressing may further include an upper base detachably coupled to the lower base.
In various embodiments, the dressing further includes a lid coupled to the upper base. The lid may be detachably coupled to the upper base, or the lid may be integrally formed with the upper base. In various embodiments, the lid absorbs and disperses forces applied to the enteral access device. In various embodiments, the lower base absorbs and disperses forces applied to the enteral access device. In various embodiments, the upper base absorbs and disperses forces applied to the enteral access device. In various embodiments, in response to the lower base and the upper base being coupled to each other, the dressing provides three-dimensional stability to the enteral access device.
Also disclosed herein, according to various embodiments, is a method of using a dressing for securing an enteral or vesical access device. The method may include attaching a lower base to an adhesive layer, aligning an inner cutout of the adhesive layer and an opening defined by the lower base with a stoma, and positioning an absorbent member within a shape of the lower base around an enteral or vesical access device extending from the stoma.
The forgoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated herein otherwise. These features and elements as well as the operation of the disclosed embodiments will become more apparent in the following description and accompanying drawings.
The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. A more complete understanding of the present disclosure, however, may best be obtained by referring to the detailed description and claims when considered with the drawing figures.
The detailed description of exemplary embodiments herein refers to the accompanying drawings, which show exemplary embodiments by way of illustration. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the disclosure, it should be understood that other embodiments may be realized and that logical changes and adaptations in design and construction may be made in accordance with this disclosure and the teachings herein without departing from the spirit and scope of the disclosure. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation.
In accordance with example embodiments, the present disclosure comprises a dressing for securing an enteral access device. The dressing is intended to secure and protect the enteral access device, as well as mitigate the formation of granulation tissue and/or leakage of gastric, intestinal or bladder contents about the device, according to various embodiments. As used herein, an “enteral access device” or “EAD” can be a device such as a gastrostomy, jejunostomy, cecostomy or vesicostomy button or tube.
In general, and with reference to
In example embodiments, adhesive layer 120 is configured to adhere a dressing of the present disclosure to a skin surface or other site where an enteral or vesical access device is prescribed. The adherence provided by adhesive layer 120 can be temporary (e.g., minutes, hours or days) or semi-permanent (e.g., days, weeks or months). By way of illustration, the adherence provided by adhesive layer 120 may last about 10-14, 7-10, 5-7 or 3-5 days. In some embodiments, adhesive layer 120 may be easily and atraumatically removable, so as to not cause pain or a significant rash or other irritation to the patient upon removal. Tape may be used to secure dressing 100 in lieu of an adhesive layer 120.
Adhesive layer 120 comprises a first surface and a second surface opposing the first surface. In example embodiments, the first surface is at least partially in contact with a skin surface. In example embodiments, the first surface is in total contact with a skin surface. The outer perimeter of adhesive layer 120 can be elliptical (e.g., circles, ovals, ellipses, and the like), non-elliptical (e.g., triangles, rectangles, squares, hexagons, trapezoids, pentagons, stars, and the like), or random (e.g., cut by stamping, knife CNC, waterjet or laser). In example embodiments, adhesive layer 120 is flexible so as to conform to a skin surface or other site where an enteral or vesical access device is prescribed.
Adhesive layer 120 can be comprised of a fabric or polymeric film with an adhesive bottom. Suitable materials for the adhesive layer 120 include, but are not limited to silicone or silicone-free adhesives with non-woven, woven, acrylic, or polyurethane backings that are biocompatible. In an example embodiment, the second surface of adhesive layer 120 does not comprise any backing, but rather, comprises an adhesive (e.g., acrylic) to attach securement base 130.
In example embodiments, absorptive layer 110 is configured to absorb blood, plasma and/or gastric, intestinal or bladder exudates, and thereby reduce skin irritation. By minimizing the presence of these biological irritants, the absorbent layer may promote cleanliness at a stoma and reduced stoma-related complications at the site where an enteral access device is prescribed.
Absorptive layer 110 in accordance with the present disclosure can be matched or unmatched to the first surface of adhesive layer 120. In example embodiments, the outer perimeter of absorptive layer 110 is smaller than the outer perimeter of adhesive layer 120. Like adhesive layer 120, the outer perimeter of absorptive layer 110 can be elliptical, non-elliptical or random (e.g., cut by stamping, knife CNC, waterjet or laser). Also like adhesive layer 120, in example embodiments, absorptive layer 110 is flexible so as to conform to a stoma or other site where an enteral access device is prescribed.
In example embodiments, absorptive layer 110 is at least partially in contact with a stoma and a surrounding skin surface. In example embodiments, absorptive layer 110 is in total contact with a stoma and a surrounding skin surface. In this regard, in example embodiments, absorptive layer 110 and adhesive layer 120 are both in contact with a skin surface at the same time.
In still other embodiments, a film or other covering may partially enclose absorptive layer 110 such that only the edge(s) in contact with a stoma or wound site are open for absorbing blood, plasma and/or gastric, intestinal or bladder exudates, for example, an edge of absorptive layer 110 that perimetrically surrounds a stoma or wound site. In some embodiments, clearance is minimized between an EAD stem and an edge of absorptive layer 110 that perimetrically surrounds the stem of the device.
Suitable materials for absorptive layer 110 include, but are not limited to cotton gauze or other natural or man-made absorbent or wicking material that is one or more of hydroconductive, non-adherent, anti-bacterial, anti-fungal and biocompatible. Absorptive layer can have a thickness of from about 0.5 to about 6 mm or more preferably, from about 1 to about 3 mm.
Securement base 130 in accordance with the present disclosure can be configured to secure an enteral access device (e.g., a hub of an enteral access device). That is, in example embodiments, and with momentary reference to
In some embodiments, securement base 130 being configured to prevent movement of an enteral access device in the z direction may prevent a balloon or other portion of an enteral access device from migrating into the tract of a stoma or other site where the device is prescribed. For example, and with momentary reference to
Securement base 130 in accordance with the present disclosure can be coupled to the second surface of adhesive layer 120. In example embodiments, the outer perimeter of securement base 130 is smaller than the outer perimeter of adhesive layer 120. Like adhesive layer 120 and absorptive layer 110, the outer perimeter of securement base 130 can be elliptical, non-elliptical or random.
In some embodiments, securement base 130 comprises one or a plurality of holes for receiving a lid of an enteral access device (e.g., to secure a lid during a feeding process). In alternative embodiments, securement base 130 extends below, to or above the upper level of an enteral access device (e.g., the hub of an enteral access device).
In some embodiments, securement base 130 is rigid or semi-rigid, while in other embodiments, securement base 130 is flexible. Rigid and semi-rigid materials can include acrylonitrile butadiene styrene (ABS), nylon, a co-polymer, thermoplastic or other polymer, polycarbonate, or the like, while flexible materials can include open cell foam, silicone foam, polyethylene foam, or the like. In example embodiments, such materials are biocompatible.
With continued reference to
Illustrative examples of enteral access devices in accordance with the present disclosure will now be described.
Turning now to
A dressing for securing an enteral access device in accordance with the present disclosure absorbs and disperses forces applied to the enteral access device, for example, over a larger surface area. As used herein, “forces” can refer to external forces (clothes catching, accidental hand swipe, etc.) and/or human-related forces (twisting of the abdomen, skin folding, coughing, etc.). In some embodiments, and with reference to
As mentioned above, a securement base may also provide one, two or three-dimensional stability (i.e., limit displacement in the x and/or y and/or z directions) to an enteral access device. By way of example,
An experiment was conducted to measure the relative displacement of a gastrostomy button when used in connection with various dressings within the scope of the present disclosure. In contrast to no dressing or a tic-tac-toe dressing, which respectively exhibited about 1.0 and about 0.4 normalized units of relative displacement in response to a 2 N force applied externally, dressings within the scope of the present disclosure exhibited less than about 0.05 normalized units of relative displacement.
Methods of using and manufacturing the dressing described above are also within the scope of the present disclosure.
As a non-limiting example, the following steps may be used to manufacture an example dressing 200 having a saddle architecture: (i) align the inner cutout of the absorptive layer with the fixture; (ii) place absorptive layer into the fixture cavity; (iii) peel circular-shaped backing off the adhesive layer; (iv) with the fabric side facing up, align the inner cutout of the adhesive layer with the fixture; (v) place the adhesive layer on top of the absorptive layer; (vi) press and rub the adhesive layer against the absorptive layer to ensure the adhesive makes uniform contact with the absorptive material; (vii) fully coat the bottom surface of the saddle structure with a thin layer of glue; (viii) with the glue covered surface of the saddle facing down, align the inner profile of the saddle with the fixture; (ix) press the saddle structure against the adhesive layer to ensure the glue makes uniform contact with the fabric material of the adhesive layer; (x) apply pressure for about several minutes to help with the bonding of the glue; (xi) inspect the edges of the saddle to ensure it is fully adhered to the adhesive layer (if there is separation between layers, reapply glue to those areas and apply pressure); and (xii) remove the fully assembled dressing from the fixture and repeat the process. The foregoing steps may be automated and may comprise 3D printing, injection molding, polymer casting and/or machining.
Similarly, the following steps may be used to manufacture an example dressing 300 having a shield architecture: (i) align the inner cutout of the absorptive layer with the fixture; (ii) place absorptive layer into the fixture cavity; (iii) peel circular-shaped backing off the adhesive layer; (iv) with the fabric side facing up, align the inner cutout of the adhesive layer with the fixture; (v) place adhesive layer on top of absorptive layer; (vi) press and rub the adhesive layer against the absorptive layer to ensure adhesive makes uniform contact with absorptive material; (vii) peel backing off the foam structures; (viii) with the adhesive side of the foam facing down, align the inner cutout of the foam with the fixture; (ix) press and rub the foam against the adhesive layer to ensure adhesive from the foam makes uniform contact with fabric material of the adhesive layer; and (x) remove fully assembled dressing from the fixture and repeat. The foregoing steps may be automated and may comprise stamping, knife CNC, waterjet or laser cut out profiles from sheets of material, injection molding and/or polymer casting.
With reference now to
In various embodiments, and with reference to
The adhesive layer 1120 may be made from a non-woven, breathable mesh material. This material may be laser cut. The adhesive layer 1120 may be made with silicone (e.g., having a thickness of about 0.25 mm) or silicone-free adhesives with non-woven, woven, acrylic, or polyurethane backings that are biocompatible. In an example embodiment, the second surface of adhesive layer 1120 does not comprise any backing, but rather, comprises an adhesive (e.g., acrylic) to attach securement base 130.
The shape of adhesive layer 1120 may be such to allow the dressing/device 1100 to best adhere around curved surfaces without any “tenting” or premature peeling. For example, the corners of adhesive layer 1120 may be rounded to prevent “tenting” or premature peeling.
The adhesive layer 1120 may have a first surface and a second surface opposing the first surface. In example embodiments, the first surface is configured to face and engage a skin surface of a user/patient. In example embodiments, the first surface is in total contact with a skin surface. The outer perimeter of adhesive layer 1120 can be elliptical (e.g., circles, ovals, ellipses, and the like), non-elliptical (e.g., triangles, rectangles, squares, hexagons, trapezoids, pentagons, stars), or the like. In example embodiments, the adhesive layer 1120 is flexible so as to conform to a skin surface or other site where an enteral access device is prescribed.
In various embodiments, and with reference to
For example, and with reference to
In some embodiments, and with reference to
In some embodiments, the base 1110 is rigid or semi-rigid, while in other embodiments, base 1110 is flexible. Rigid materials can include acrylonitrile butadiene styrene (ABS), nylon, a co-polymer, thermoplastic or other polymer, polycarbonate, or the like, while flexible materials can include open cell foam, silicone foam, polyethylene foam, or the like. In example embodiments, such materials are biocompatible. In various embodiments, and with reference to
In various embodiments, and with reference to
In example embodiments, absorbent member 1130 is at least partially in contact with a stoma and a surrounding skin surface. For example, adhesive layer 1120 may have an opening similar in size and shape to the opening defined by the base 1110. In example embodiments, absorbent member 1130 is in contact with a stoma and surrounding skin surface. In this regard, in example embodiments, absorbent member 1130 and adhesive layer 1120 are both in contact with a skin surface at the same time. Suitable materials for absorbent member 1130 include, but are not limited to, cotton gauze or another natural or man-made absorbent or wicking material that is one or more of hydroconductive, non-adherent, anti-bacterial, anti-fungal, environmentally friendly (e.g., non-toxic), and biocompatible.
In various embodiments, and with reference to
As shown in
In some embodiments, and with reference to
For example, and with reference to
The upper base 1110B and the lid 1140 may be separable components. For example, the lid 1140 may include a slit 1142 through which the tab 1112 of the upper base 1110B (
In various embodiments, and with reference to
Methods of using and manufacturing the dressing described above are also within the scope of the present disclosure. As a non-limiting example, the following steps may be employed to use the dressing 1100. (i) attach a lower base 1110A to the adhesive layer 1120, (ii) align an inner cutout of the adhesive layer 1120 and the opening defined by the lower base 1110A with a stoma, (iii) peel backing off the adhesive layer 1120; (iv) press and rub the adhesive layer 1120 against the skin of the patient around the stoma, (v) position the absorbent member 1130 around the stem of an enteral access device that is inserted relative to the stoma, and (vi) cover the opening in the base layer with a lid 1140 by coupling the upper base 1110B to the lower base 1110A.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present disclosure without departing from the spirit or scope of the disclosure. For example, while various embodiments have been described with reference to a dressing for a gastrostomy button, the invention is not so limited, and may be applied more generally to dressings for other enteral, vesical and parenteral access devices. Thus, it is intended that the embodiments described herein cover the modifications and variations of this disclosure provided they come within the scope of the appended claims and their equivalents.
Benefits, other advantages, and solutions to problems have been described herein with regard to specific embodiments. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system. However, the benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the disclosure.
The scope of the disclosure is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” It is to be understood that unless specifically stated otherwise, references to “a,” “an,” and/or “the” may include one or more than one and that reference to an item in the singular may also include the item in the plural. All ranges and ratio limits disclosed herein may be combined.
Moreover, where a phrase similar to “at least one of A, B, and C” is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C.
Also, any reference to attached, fixed, connected, coupled or the like may include permanent (e.g., integral), removable, temporary, partial, full, and/or any other possible attachment option. Different cross-hatching is used throughout the figures to denote different parts but not necessarily to denote the same or different materials.
The steps recited in any of the method or process descriptions may be executed in any order and are not necessarily limited to the order presented. Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Elements and steps in the figures are illustrated for simplicity and clarity and have not necessarily been rendered according to any particular sequence. For example, steps that may be performed concurrently or in different order are illustrated in the figures to help to improve understanding of embodiments of the present disclosure.
Any reference to attached, fixed, connected or the like may include permanent, removable, temporary, partial, full and/or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact. Surface shading lines may be used throughout the figures to denote different parts or areas but not necessarily to denote the same or different materials. In some cases, reference coordinates may be specific to each figure.
Systems, methods and apparatus are provided herein. In the detailed description herein, references to “one embodiment”, “an embodiment”, “various embodiments”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.
Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element is intended to invoke 35 U.S.C. 112(f) unless the element is expressly recited using the phrase “means for.” As used herein, the terms “comprises”, “comprising”, or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US18/29434 | 4/25/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62489710 | Apr 2017 | US | |
62636536 | Feb 2018 | US |