This disclosure relates generally to medical treatment systems and, more particularly, but not by way of limitation, to absorbent dressings, systems, and methods for treating a tissue site with or without application of reduced pressure.
Medical dressings may provide for the management of fluid at a tissue site in a variety of ways. Such dressings may be configured to retain or absorb fluid from a tissue site when used with or without reduced pressure. However, the application of reduced pressure to a dressing and a tissue site may enhance the treatment of the tissue site in some instances. In general, reduced pressure may be used for, among other things, reduced-pressure therapy to encourage granulation at a tissue site, draining fluids at a tissue site, closing a wound, reducing edema, promoting perfusion, and fluid management.
Challenges may exist, for example, from swelling in a dressing that may occur when the dressing retains or absorbs fluid while treating a tissue site. Such swelling may cause discomfort and interfere with healing. Further, some tissue sites may be difficult to reach or otherwise have limited access for the application of a dressing, which may present additional challenges. Thus, a need exists for improvements to dressings, systems, and methods that can enhance the management of fluid at a tissue site.
In some illustrative embodiments, a dressing for treating a tissue site may include a fluid transport layer, an offloading layer, and a liquid deflector. The fluid transport layer may include a first side and a second side configured to be in fluid communication with the tissue site. The first side of the fluid transport layer may be adapted to be positioned facing the tissue site. The offloading layer may be in fluid communication with the fluid transport layer. The offloading layer may include a force offloading region and a target region. The liquid deflector may be positioned between the second side of the fluid transport layer and the offloading layer. The liquid deflector may be configured to deflect a liquid from the tissue site into contact with the target region of the offloading layer.
In some illustrative embodiments, a system for treating a tissue site may include a dressing and a reduce-pressure source. The dressing may include a base layer, a sealing member, a fluid transport layer, an enclosing layer, an offloading layer, and a liquid deflector. The base layer may include a periphery and a central portion. A plurality of apertures may be disposed through the base layer. The sealing member may include a periphery and a central portion. The periphery of the sealing member may be positioned proximate to the periphery of the base layer. The fluid transport layer may be positioned between the base layer and the sealing member. The enclosing layer may be positioned between the fluid transport layer and the sealing member. The offloading layer may be positioned between the fluid transport layer and the enclosing layer, and the offloading layer may comprise a force offloading region and a target region. The liquid deflector may be positioned between the fluid transport layer and the offloading layer. The liquid deflector may be configured to deflect a liquid toward the target region of the offloading layer. The reduced-pressure source may be adapted to be in fluid communication with the dressing to provide reduced pressure to the tissue site.
In some illustrative embodiments, a method of offloading a force at a tissue site may include positioning an offloading layer at the tissue site. The offloading layer may comprise a force offloading region and a target region, and the target region may be positioned at a periphery of the tissue site. Further, the method may include expanding at least the target region of the offloading layer such that the target region is expanded more than the force offloading region.
Other aspects, features, and advantages of the illustrative embodiments will become apparent with reference to the drawings and detailed description that follow.
In the following detailed description of illustrative embodiments, reference is made to the accompanying drawings that form a part hereof. This detailed description is non-limiting, and the scope of the illustrative embodiments are defined by the appended claims. Other embodiments may be utilized, and logical, structural, mechanical, electrical, and chemical changes may be made without departing from the scope of the appended claims. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the detailed description may omit certain information known to those skilled in the art. As used herein, unless otherwise indicated, “or” does not require mutual exclusivity.
Referring to the drawings,
Further, the tissue site 104 may be the bodily tissue of any human, animal, or other organism, including bone tissue, adipose tissue, muscle tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, ligaments, or any other tissue. The treatment of the tissue site 104 may include the removal of fluids, such as exudate or ascites.
The tissue site 104 may have a periphery 107, such as a boundary, perimeter, or outer region around or surrounding the tissue site 104. The periphery 107 of the tissue site 104 may be tissue or a portion of tissue around or surrounding the tissue site 104 that may be suitable for securing the dressing 124 about the tissue site 104 and capable of supporting a force, such as a compressive, downward, inward or other such force that may be experienced at or directed toward the tissue site 104. As shown in
The system 102 may include an optional tissue interface, such as an interface manifold 120, and a dressing 124. Further, the system 102 may include a reduced-pressure source 128, for example, for treatment applications that may benefit from exposure to reduced pressure. The reduced-pressure source 128 may be a component of an optional therapy unit 130 as shown in
As indicated above, the interface manifold 120 is an optional component that may be omitted for different types of tissue sites or different types of therapy. If equipped, the interface manifold 120 may be adapted to be positioned proximate to or adjacent to the tissue site 104, such as, for example, by cutting or otherwise shaping the interface manifold 120 in any suitable manner to fit the tissue site 104. As described below, the interface manifold 120 may be adapted to be positioned in fluid communication with the tissue site 104 to distribute reduced pressure to the tissue site 104 or otherwise communicate fluid. In some embodiments, the interface manifold 120 may be positioned in direct contact with the tissue site 104.
The interface manifold 120 may be formed from any manifold material or flexible bolster material that provides a vacuum space, or treatment space, such as, for example, a porous and permeable foam or foam-like material, a member formed with pathways, a graft, or a gauze. Further, any material or combination of materials may be used as a manifold material for the interface manifold 120 provided that the manifold material is operable to distribute or collect fluid across a tissue site. For example, herein the term manifold may refer to a substance or structure capable of delivering fluids to or removing fluids from across a tissue site through a plurality of pores, pathways, or flow channels. The plurality of pores, pathways, or flow channels may be interconnected to improve distribution of fluids provided to and removed from an area around the manifold. Examples of manifolds may include, without limitation, devices that have structural elements arranged to form flow channels, cellular foam, such as open-cell foam, porous tissue collections, and liquids, gels, and foams that include or cure to include flow channels.
In some embodiments, the interface manifold 120 may be a reticulated, open-cell polyurethane or polyether foam that is fluid permeable while under a reduced pressure. One such foam material may be VAC® GranuFoam® material available from Kinetic Concepts, Inc. of San Antonio, Texas In other embodiments, a material with a higher or lower density than GranuFoam® material may be desirable for the interface manifold 120 depending on the application. Among the many possible materials, the following may be used: GranuFoam® material; Foamex® technical foam (www.foamex.com); a molded bed of nails structure; a patterned grid material, such as those manufactured by Sercol Industrial Fabrics; 3D textiles, such as those manufactured by Baltex of Derby, U.K.; a gauze; a flexible channel-containing member; or a graft; etc. In some embodiments, ionic silver may be added to the interface manifold 120 by, for example, a micro bonding process. Other substances, such as anti-microbial agents, may be added to the interface manifold 120 as well.
In some embodiments, the interface manifold 120 may comprise a porous, hydrophobic material. In such embodiments, the hydrophobic characteristics of the interface manifold 120 may prevent the interface manifold 120 from directly absorbing fluid from the tissue site 104, but allow the fluid to pass through.
Continuing with
The conduit interface 145 may be positioned proximate to the sealing member 140 and in fluid communication with the dressing 124 and the components thereof, for example, through an aperture 146, shown in dash line in
The conduit interface 145 may comprise a medical-grade, soft polymer or other pliable material. As non-limiting examples, the conduit interface 145 may be formed from polyurethane, polyethylene, polyvinyl chloride (PVC), fluorosilicone, or ethylene-propylene, etc. In some embodiments, conduit interface 145 may be molded from DEHP-free PVC. The conduit interface 145 may be formed in any suitable manner, such as, without limitation, by molding, casting, machining, or extruding. Further, the conduit interface 145 may be formed as an integral unit or as individual components, and the conduit interface 145 may be coupled to the dressing 124 by, for example, adhesive or welding.
In some embodiments, the conduit interface 145 may be formed of an absorbent material having absorbent and evaporative properties. The absorbent material may be vapor permeable and liquid impermeable, thereby being configured to permit vapor to be absorbed into and evaporated from the material through permeation while inhibiting the permeation of liquids. The absorbent material may be, for example, a hydrophilic polymer such as a hydrophilic polyurethane. Although the term hydrophilic polymer may be used in the illustrative embodiments that follow, any absorbent material having the properties described herein may be suitable for use in the system 102. Further, the absorbent material or hydrophilic polymer may be suitable for use in various components of the system 102 as described herein.
The use of such a hydrophilic polymer for the conduit interface 145 may permit any liquids in the conduit interface 145 to evaporate, or otherwise dissipate, during operation. For example, the hydrophilic polymer may allow the liquid to permeate or pass through the conduit interface 145 as vapor, in a gaseous phase, and evaporate into the atmosphere external to the conduit interface 145. Such liquids may be, for example, condensate or other liquids. Condensate may form, for example, as a result of a decrease in temperature within the conduit interface 145, or other components of the system 102, relative to the temperature at the tissue site 104. The removal or dissipation of liquids from the conduit interface 145 may increase visual appeal and prevent odor. Further, such removal of liquids may also increase efficiency and reliability by reducing blockages and other interference with the components of the system 102.
Similar to the conduit interface 145, the liquid trap 147, and other components of the system 102 described herein, may also be formed of an absorbent material or a hydrophilic polymer. The absorptive and evaporative properties of the hydrophilic polymer may also facilitate removal and dissipation of liquids that may reside in the liquid trap 147, and other components of the system 102, by evaporation. Such evaporation may leave behind a substantially solid or gel-like waste. The substantially solid or gel-like waste may be cheaper to dispose than liquids, providing a cost savings for operation of the system 102. The hydrophilic polymer may be used for other components in the system 102 where the management of liquids is beneficial.
In some embodiments, the absorbent material or hydrophilic polymer may have an absorbent capacity in a saturated state that is substantially equivalent to the mass of the hydrophilic polymer in an unsaturated state. The hydrophilic polymer may be fully saturated with vapor in the saturated state and substantially free of vapor in the unsaturated state. In both the saturated state and the unsaturated state, the hydrophilic polymer may retain substantially the same physical, mechanical, and structural properties. For example, the hydrophilic polymer may have a hardness in the unsaturated state that is substantially the same as a hardness of the hydrophilic polymer in the saturated state. The hydrophilic polymer and the components of the system 102 incorporating the hydrophilic polymer may also have a size that is substantially the same in both the unsaturated state and the saturated state. Further, the hydrophilic polymer may remain dry, cool to the touch, and pneumatically sealed in the saturated state and the unsaturated state. The hydrophilic polymer may also remain substantially the same color in the saturated state and the unsaturated state. In this manner, this hydrophilic polymer may retain sufficient strength and other physical properties to remain suitable for use in the system 102. An example of such a hydrophilic polymer is offered under the trade name Techophilic HP-93A-100, available from The Lubrizol Corporation of Wickliffe, Ohio, United States. Techophilic HP-93A-100 is an absorbent hydrophilic thermoplastic polyurethane capable of absorbing 100% of the unsaturated mass of the polyurethane in water and having a durometer or Shore Hardness of about 83 Shore A.
The conduit interface 145 may carry an odor filter 148 adapted to substantially preclude the passage of odors from the tissue site 104 out of a sealed space 149 provided by the sealing member 140. Further, the conduit interface 145 may carry a primary hydrophobic filter 150 adapted to substantially preclude the passage of liquids out of the sealed space 149. The odor filter 148 and the primary hydrophobic filter 150 may be disposed in the conduit interface 145 or other suitable location such that fluid communication between the reduced-pressure source 128, or optional therapy unit 130, and the dressing 124 is provided through the odor filter 148 and the primary hydrophobic filter 150. In some embodiments, the odor filter 148 and the primary hydrophobic filter 150 may be secured within the conduit interface 145 in any suitable manner, such as by adhesive or welding. In other embodiments, the odor filter 148 and the primary hydrophobic filter 150 may be positioned in any exit location in the dressing 124 that is in fluid communication with the atmosphere, the reduced-pressure source 128, or the optional therapy unit 130. The odor filter 148 may also be positioned in any suitable location in the system 102 that is in fluid communication with the tissue site 104.
The odor filter 148 may be comprised of a carbon material in the form of a layer or particulate. For example, in some embodiments, the odor filter 148 may comprise a woven carbon cloth filter such as those manufactured by Chemviron Carbon, Ltd. of Lancashire, United Kingdom (www.chemvironcarbon.com). The primary hydrophobic filter 150 may be comprised of a material that is liquid impermeable and vapor permeable. For example, in some embodiments, the primary hydrophobic filter 150 may comprise a material manufactured under the designation MMT-314 by W.L. Gore & Associates, Inc. of Newark, Delaware, United States, or similar materials. Further, in some embodiments, the primary hydrophobic filter 150 may be provided in the form of a membrane or layer.
Continuing with
As used herein, reduced pressure may refer to a pressure less than the ambient pressure at a tissue site being subjected to treatment. The reduced pressure may be less than the atmospheric pressure, and may also be less than a hydrostatic pressure at a tissue site. Unless otherwise indicated, values of pressure stated herein are gauge pressures. While the amount and nature of reduced pressure applied to a tissue site may vary according to the application, in some embodiments, the reduced pressure may be between about −5 mm Hg to about −500 mm Hg. In some embodiments, the reduced pressure may be between about −100 mm Hg to about −200 mm Hg.
The reduced pressure may be constant, varied, patterned, or random, and may be delivered continuously or intermittently. Although the terms vacuum and negative pressure may be used to describe the pressure applied to the tissue site, the actual pressure applied to the tissue site may be more than the pressure normally associated with a complete vacuum. Consistent with the use herein, an increase in reduced pressure or vacuum pressure may refer to a relative reduction in absolute pressure. For example, an increase in reduced pressure may correspond to a reduction in pressure (more negative relative to ambient pressure) and a decrease in reduced pressure may correspond to an increase in pressure (less negative relative to ambient pressure).
As shown in
The conduit 151 may have a secondary hydrophobic filter 154 disposed in the internal lumen 152 such that fluid communication between the reduced-pressure source 128 and the dressing 124 is provided through the secondary hydrophobic filter 154. The secondary hydrophobic filter 154 may be, for example, a porous, sintered polymer cylinder sized to fit the dimensions of the internal lumen 152 to substantially preclude liquid from bypassing the cylinder. The secondary hydrophobic filter 154 may also be treated with an absorbent material adapted to swell when brought into contact with liquid to block the flow of the liquid. The secondary hydrophobic filter 154 may be positioned at any location within the internal lumen 152. However, positioning the secondary hydrophobic filter 154 within the internal lumen 152 closer toward the reduced-pressure source 128, rather than the dressing 124, may allow a user to detect the presence of liquid in the internal lumen 152.
In some embodiments, the conduit 151 and the coupling 153 may be formed of an absorbent material or a hydrophilic polymer as described above for the conduit interface 145. In this manner, the conduit 151 and the coupling 153 may permit liquids in the conduit 151 and the coupling 153 to evaporate, or otherwise dissipate, as described above for the conduit interface 145. The conduit 151 and the coupling 153 may be, for example, molded from the hydrophilic polymer separately, as individual components, or together as an integral component. Further, a wall of the conduit 151 defining the internal lumen 152 may be extruded from the hydrophilic polymer. In some embodiments, the conduit 151 may be less than about 1 meter in length, but may have any length to suit a particular application. A length of about 1 foot or 304.8 millimeters for the conduit 151 may provide enough absorbent and evaporative surface area to suit many applications, and may provide a cost savings compared to longer lengths. If an application requires additional length for the conduit 151, the absorbent hydrophilic polymer may be coupled in fluid communication with a length of conduit formed of a non-absorbent hydrophobic polymer to provide additional cost savings.
Referring to
The apertures 160 in the base layer 132 may have any shape, such as, for example, circles, squares, stars, ovals, polygons, slits, complex curves, rectilinear shapes, triangles, or other shapes. The apertures 160 may be formed by cutting, by application of local RF energy, or other suitable techniques for forming an opening. As shown in
The area of the apertures 160 described in the illustrative embodiments herein may be substantially similar to the area in other embodiments (not shown) for the apertures 160 that may have non-circular shapes. The diameter of each of the apertures 160 may be substantially the same, or each of the diameters may vary depending, for example, on the position of the aperture 160 in the base layer 132. For example, in some embodiments, the diameter of the apertures 160 in the periphery 155 of the base layer 132 may be larger than the diameter of the apertures 160 in the central portion 156 of the base layer 132. In some embodiments, the diameter of each of the apertures 160 may be between about 1 millimeter to about 50 millimeters. In other embodiments, the diameter of each of the apertures 160 may be between about 1 millimeter to about 20 millimeters. The apertures 160 may have a uniform pattern or may be randomly distributed on the base layer 132. The size and configuration of the apertures 160 may be designed to control the adherence of the dressing 124 to the epidermis 106 as described below.
Referring to
In some embodiments, the diameter of each of the apertures 160a may be separated from one another by a distance A between about 2.8 millimeters to about 3.2 millimeters. Further, the diameter of at least one of the apertures 160a may be separated from the diameter of at least one of the apertures 160b by the distance A. The diameter of each of the apertures 160b may also be separated from one another by the distance A. A center of one of the apertures 160c may be separated from a center of another of the apertures 160c in a first direction by a distance B between about 2.8 millimeters to about 3.2 millimeters. In a second direction transverse to the first direction, the center of one of the apertures 160c may be separated from the center of another of the apertures 160c by a distance C between about 2.8 millimeters to about 3.2 millimeters. As shown in
Continuing with
Although
The base layer 132 may be a soft, pliable material suitable for providing a fluid seal with the tissue site 104 as described herein. For example, the base layer 132 may comprise, without limitation, a silicone gel, a soft silicone, hydrocolloid, hydrogel, polyurethane gel, polyolefin gel, hydrogenated styrenic copolymer gel, a foamed gel, a soft closed cell foam such as polyurethanes and polyolefins coated with an adhesive described below, polyurethane, polyolefin, or hydrogenated styrenic copolymers. In some embodiments, the base layer 132 may have a thickness between about 500 microns (μm) and about 1000 microns (μm). In some embodiments, the base layer 132 may have a stiffness between about 5 Shore OO and about 80 Shore OO. Further, the base layer 132 may be comprised of hydrophobic or hydrophilic materials.
In some embodiments (not shown), the base layer 132 may be a hydrophobic-coated material. For example, the base layer 132 may be formed by coating a spaced material, such as, for example, woven, nonwoven, molded, or extruded mesh with a hydrophobic material. The hydrophobic material for the coating may be a soft silicone, for example. In this manner, the adhesive 136 may extend through openings in the spaced material analogous to the apertures 160 as described below.
Continuing with
At least one of the apertures 160a in the periphery 155 of the base layer 132 may be positioned at the edges 159 of the periphery 155, and may have an interior cut open or exposed at the edges 159 that is in fluid communication in a lateral direction with the edges 159. The lateral direction may refer to a direction toward the edges 159 and in the same plane as the base layer 132. As shown in
Continuing with
Similar to the apertures 160b in the corners 158, any of the apertures 160 may be adjusted in size and number to maximize the surface area of the adhesive 136 in fluid communication through the apertures 160 for a particular application or geometry of the base layer 132. For example, in some embodiments (not shown) the apertures 160b, or apertures of another size, may be positioned in the periphery 155 and at the border 161. Similarly, the apertures 160b, or apertures of another size, may be positioned as described above in other locations of the base layer 132 that may have a complex geometry or shape.
The adhesive 136 may be a medically-acceptable adhesive. The adhesive 136 may also be flowable. For example, the adhesive 136 may comprise an acrylic adhesive, rubber adhesive, high-tack silicone adhesive, polyurethane, or other adhesive substance. In some embodiments, the adhesive 136 may be a pressure-sensitive adhesive comprising an acrylic adhesive with coating weight of about 15 grams/m2 (gsm) to about 70 grams/m2 (gsm). The adhesive 136 may be a layer having substantially the same shape as the periphery 155 of the base layer 132 as shown in
Factors that may be utilized to control the adhesion strength of the dressing 124 may include the diameter and number of the apertures 160 in the base layer 132, the thickness of the base layer 132, the thickness and amount of the adhesive 136, and the tackiness of the adhesive 136. An increase in the amount of the adhesive 136 extending through the apertures 160 may correspond to an increase in the adhesion strength of the dressing 124. A decrease in the thickness of the base layer 132 may correspond to an increase in the amount of the adhesive 136 extending through the apertures 160. Thus, the diameter and configuration of the apertures 160, the thickness of the base layer 132, and the amount and tackiness of the adhesive utilized may be varied to provide a desired adhesion strength for the dressing 124. For example, in some embodiments, the thickness of the base layer 132 may be about 200 microns, the adhesive 136 may have a thickness of about 30 microns and a tackiness of 2000 grams per 25 centimeter wide strip, and the diameter of the apertures 160a in the base layer 132 may be about 10 millimeters.
In some embodiments, the tackiness of the adhesive 136 may vary in different locations of the base layer 132. For example, in locations of the base layer 132 where the apertures 160 are comparatively large, such as the apertures 160a, the adhesive 136 may have a lower tackiness than other locations of the base layer 132 where the apertures 160 are smaller, such as the apertures 160b and 160c. In this manner, locations of the base layer 132 having larger apertures 160 and lower tackiness adhesive 136 may have an adhesion strength comparable to locations having smaller apertures 160 and higher tackiness adhesive 136.
Clinical studies have shown that the configuration described herein for the base layer 132 and the adhesive 136 may reduce the occurrence of blistering, erythema, and leakage when in use. Such a configuration may provide, for example, increased patient comfort and increased durability of the dressing 124.
Referring to
Referring to
The sealing member 140 may be formed from any material that allows for a fluid seal. A fluid seal may be a seal adequate to maintain reduced pressure at a desired site given the particular reduced pressure source or system involved. The sealing member 140 may comprise, for example, one or more of the following materials: hydrophilic polyurethane; cellulosics; hydrophilic polyamides; polyvinyl alcohol; polyvinyl pyrrolidone; hydrophilic acrylics; hydrophilic silicone elastomers; an INSPIRE 2301 material from Expopack Advanced Coatings of Wrexham, United Kingdom having, for example, an MVTR (inverted cup technique) of 14400 g/m2/24 hours and a thickness of about 30 microns; a thin, uncoated polymer drape; natural rubbers; polyisoprene; styrene butadiene rubber; chloroprene rubber; polybutadiene; nitrile rubber; butyl rubber; ethylene propylene rubber; ethylene propylene diene monomer; chlorosulfonated polyethylene; polysulfide rubber; polyurethane (PU); EVA film; co-polyester; silicones; a silicone drape; a 3M Tegaderm® drape; a polyurethane (PU) drape such as one available from Avery Dennison Corporation of Pasadena, California; polyether block polyamide copolymer (PEBAX), for example, from Arkema, France; Expopack 2327; or other appropriate material.
The sealing member 140 may be vapor permeable and liquid impermeable, thereby allowing vapor and inhibiting liquids from exiting the sealed space 149 provided by the dressing 124. In some embodiments, the sealing member 140 may be a flexible, breathable film, membrane, or sheet having a high MVTR of, for example, at least about 300 g/m2 per 24 hours. In other embodiments, a low or no vapor transfer drape might be used. The sealing member 140 may comprise a range of medically suitable films having a thickness between about 15 microns (μm) to about 50 microns (μm).
Referring to
The fluid management assembly 144 may be a pre-laminated structure manufactured at a single location or individual layers of material stacked upon one another as described herein. Individual layers of the fluid management assembly 144 may be bonded or otherwise secured to one another without adversely affecting fluid management by, for example, utilizing a solvent or non-solvent adhesive, or by thermal welding. Further, the fluid management assembly 144 may be coupled to the border 161 of the base layer 132 in any suitable manner, such as, for example, by a weld or an adhesive. The border 161 being free of the apertures 160 as described above may provide a flexible barrier between the fluid management assembly 144 and the tissue site 104 for enhancing comfort.
The fluid transport layer 176 may include a first side 184 and a second side 186 in fluid communication with the tissue site 104, and a periphery 187. The first side 184 of the fluid transport layer 176 may be adapted to be positioned facing the tissue site 104. In some embodiments, the fluid transport layer 176 may be positioned between the base layer 132 and the sealing member 140. The fluid transport layer 176 may be adapted to provide fluid communication with the tissue site 104, and to wick liquid from the tissue site 104 along the fluid transport layer 176 in a lateral direction normal to a thickness of the fluid transport layer 176. For example, the fluid transport layer 176 may wick or otherwise transport liquid in a lateral direction along a surface of the fluid transport layer 176, such as the first side 184 and/or the second side 186. The lateral direction may be parallel to the first side 184 and/or the second side 186. The surface of the fluid transport layer 176 may be normal relative to the thickness of fluid transport layer 176. The wicking of liquid along the fluid transport layer 176 may enhance the distribution of liquid to the offloading layer 180.
The fluid transport layer 176 may comprise a fluid permeable material that may be a non-woven. In some embodiments, the fluid transport layer 176 may comprise a polyester fibrous and porous structure. Further, in some embodiments, the first side 184 of the fluid transport layer 176 maybe a hydrophilic side, and the second side 186 of the fluid transport layer 176 may be a hydrophobic side. For example, the hydrophilic side of the fluid transport layer 176 may comprise a fibrous surface adapted to acquire the liquid from the tissue site 104 for moving or drawing liquid through the fluid transport layer 176 and toward the offloading layer 180. The hydrophilic side may also be referred to as a fluid acquisition surface, fluid acquisition side, hydrophilic acquisition surface, or hydrophilic acquisition side. The hydrophobic side of the fluid transport layer 176 may comprise a directional grain (not shown) adapted to wick or distribute the liquid along the directional grain. The hydrophobic side may also be referred to as a wicking side, wicking surface, distribution surface, distribution side, or fluid distribution surface. The hydrophobic side may have a smooth texture relative to the fibrous texture of the hydrophilic side.
Materials that may be suitable for the fluid transport layer 176 may include any material having a directional grain structure capable of wicking fluid as described herein, such as, for example, LIBELTEX TDL2 or LIBELTEX TL4. The fluid transport layer 176 may have a material density between about 80 gsm to about 150 gsm. In other embodiments, the material density may be lower or greater depending on the particular application or need.
The offloading layer 180 may be positioned in fluid communication with the fluid transport layer 176. In some embodiments, the offloading layer 180 may be positioned in fluid communication between the fluid transport layer 176 and the optional enclosing layer 182. The offloading layer 180 may include a force offloading region 188, a target region 190, and a periphery 192. The target region 190 of the offloading layer 180 may be adapted to expand in thickness upon contact with liquid from the tissue site 104, while the force offloading region 188 of the offloading layer 180 may be adapted to be substantially free of expansion and contact with the liquid.
The force offloading region 188 may be adapted to cover the tissue site 104, and the target region 190 may be adapted to be positioned at or around the periphery 107 of the tissue site 104. In some embodiments, the target region 190 may be positioned around the force offloading region 188. Further, in some embodiments, the target region 190 may be positioned at a periphery 194 of the force offloading region 188.
The offloading layer 180 may comprise an absorbent material or hydrophilic material, such as, for example a super absorbent polymer capable of absorbing liquid that may be associated with the tissue site 104. Materials that may be suitable for the offloading layer 180 may include, without limitation, Luquafleece® material; Texsus FP2326; BASF 402C; Technical Absorbents 2317, available from Technical Absorbents; sodium polyacrylate super absorbers; cellulosics (carboxy methyl cellulose and salts such as sodium CMC); alginates; or any combination of such materials. Further, the offloading layer 180 may comprise a material that may be, without limitation, foam, mesh, non-woven, or granular in nature.
As shown in
Although the target region 190 among the embodiments of the offloading layer 180 may include the opening 196 and/or the perforations 198, the target region 190 may have a greater thickness, a greater density, or an increased tendency to swell or expand when in use relative to the force offloading region 188. For example, in some embodiments, the absorbent material of the offloading layer 180 may be positioned at least in the target region 190 of the offloading layer 180. In other embodiments, the target region 190 may have more of the absorbent material than the force offloading region 188. In yet other embodiments, the target region 190 may be more absorbent than the force offloading region 188.
Continuing with
The liquid deflector 178 may comprise a substantially liquid-impermeable material or film. In some embodiments, the liquid deflector 178 may comprise a thin and flexible polymer film. Materials suitable for the liquid deflector 178 may include, without limitation, polyurethane, thermoplastic elastomer, polythene, or polyester. The liquid deflector 178 may be held in place in the dressing 124 by, for example, adhesive, friction between the layers or components of the dressing 124, welding, or other medically accepted manner.
The target region 190 of the offloading layer 180 may be adapted to extend beyond the periphery 200 of the liquid deflector 178, leaving the target region 190 and the periphery 192 or edge of the offloading layer 180 exposed. For example, the liquid deflector 178 may have a surface area smaller than a surface area of the offloading layer 180. In some embodiments, the liquid deflector 178 may include a surface area between about 50 percent to about 80 percent of a surface area of the offloading layer 180. In this manner, liquid from the tissue site 104 may be directed around the periphery 200 of the liquid deflector 178 and into contact with the target region 190 and the periphery 192 or edge of the offloading layer 180.
In some embodiments, the liquid deflector 178 may comprise a substantially continuous sheet as shown in
Increasing the size or number of the liquid deflector perforations 212 may correspond to an increase in the amount of liquid from the tissue site 104 that may be brought into contact with the target region 190, or other desired region of the offloading layer 180, that is positioned adjacent to the liquid deflector perforations 212. Such an increase in the amount of liquid brought into contact with the offloading layer 180 may correspond to an increase in swelling or expansion of the particular region of the offloading layer 180 adjacent to the liquid deflector perforations 212. Thus, the liquid deflector perforations 212 may be positioned, sized, or configured according to the degree of swelling and expansion desired in a particular region of the offloading layer 180. Further, the liquid deflector perforations 212 may be omitted adjacent to regions of the offloading layer 180 where such swelling and expansion may not be desired.
The enclosing layer 182 may assist with positioning and retaining the offloading layer 180. For example, the enclosing layer 182 may be adapted to direct or orient the expansion or increase in thickness of the offloading layer 180 in a vertical direction, normal to the tissue site 104, while reducing or precluding lateral expansion of the offloading layer 180. In some embodiments, the enclosing layer 182 may be disposed or positioned between the sealing member 140 and the offloading layer 180. Further, in some embodiments, the enclosing layer 182 may be positioned between the fluid transport layer 176 and the sealing member 140. Further, in some embodiments, the periphery 187 of the fluid transport layer 176 may be coupled to a periphery 216 of the enclosing layer 182 to define an offloading enclosure 220, shown in
The enclosing layer 182 may be comprised of similar materials configured to wick liquids in a lateral direction as described above for the fluid transport layer 176. In embodiments using reduced pressure, the use of such wicking materials for the enclosing layer 182 may also be suitable for use as a pressure distribution layer for distributing reduced pressure through the offloading layer 180 to the tissue site 104. However, in other embodiments, the enclosing layer 182 may comprise a porous mesh material or non-wicking material, which may be suitable for use without reduced pressure. The use of a non-wicking material for the enclosing layer 182 may prevent liquid from being redistributed over a side of the offloading layer 180 positioned opposite to the liquid deflector 178, which may beneficially cause clogging or gel-blocking in the offloading layer 180. Such clogging or gel-blocking may be desirable for slowing or preventing the wicking or migration of liquid from the tissue site 104 into the offloading region 188 from the target region 190 of the offloading layer 180. Suitable non-wicking materials for use in the enclosing layer 182 may include, without limitation, polyolefins, polyesters, polyamides, thermoplastic polyurethanes, thermoplastic elastomers, block co-polymers, PEBAX, acrylics, acetate co-polymers, or other such plastic materials.
Referring to
Referring to
Referring to
In operation of the system 102 according to some illustrative embodiments, the optional interface manifold 120 may be disposed against, proximate to, or in contact with the tissue site 104. The dressing 124, 232 may be applied over the optional interface manifold 120 and the tissue site 104 to form the sealed space 149. In some embodiments, the base layer 132 may be applied over, covering, or adjacent to the interface manifold 120 and tissue around or surrounding the tissue site 104. In other embodiments, the base layer 132 may be applied directly over, covering, or adjacent to the tissue site 104 and tissue around or surrounding the tissue site 104 without use of the optional interface manifold 120. In yet other embodiments, the base layer 132 may be omitted as described above for the dressing 232, and the sealing member 140 may be sealed about the tissue site 104 with the adhesive 136. Further, the force offloading region 188 of the offloading layer 180 in the dressing 124, 232 may be positioned substantially centered on, over, covering, or adjacent to the tissue site 104. The dressing guide indicator 230, being positioned substantially centered on or within the force offloading region 188 as described above, may assist the user with positioning the dressing 124, 232 at the tissue site 104.
In embodiments using the base layer 132, the materials described above for the base layer 132 may have a tackiness that may hold the dressing 124 initially in position. The tackiness may be such that if an adjustment is desired, the dressing 124 may be removed and reapplied. Once the dressing 124 is in the desired position, a force, such as hand pressure, may be applied on a side of the sealing member 140 opposite the tissue site 104 or facing away from the tissue site 104. The force applied to the sealing member 140 may cause at least some portion of the adhesive 136 to penetrate or extend through the plurality of apertures 160 and into contact with tissue around or surrounding the tissue site 104, such as the epidermis 106, to releasably adhere the dressing 124 about the tissue site 104. In this manner, the configuration of the dressing 124 described above may provide an effective and reliable seal against challenging anatomical surfaces, such as an elbow or heal, at and around the tissue site 104. Further, the dressing 124 may permit re-application or re-positioning to, for example, correct air leaks caused by creases and other discontinuities in the dressing 124 and the tissue site 104. The ability to rectify leaks may increase the reliability of the therapy and reduce power consumption in some embodiments.
As the dressing 124, 232 comes into contact with liquid from the tissue site 104, the liquid may move toward the fluid management assembly 144. In embodiments using the base layer 132, the liquid may move through the apertures 160 in the base layer 132 before coming into contact with the fluid management assembly 144. The fluid management assembly 144 may wick or otherwise move the liquid through the optional interface manifold 120 and away from the tissue site 104. As described above, the interface manifold 120 may be adapted to communicate liquid from the tissue site 104 to the fluid management assembly 144, rather than store the liquid. Thus, in some embodiments, the fluid management assembly 144 may be more absorbent than the interface manifold 120. Configuring the fluid management assembly 144 to be more absorbent than the interface manifold 120 may provide an absorbent gradient through the dressing 124, 232 that may attract liquid from the tissue site 104 or the interface manifold 120 to the fluid management assembly 144. Thus, in some embodiments, the fluid management assembly 144 may be adapted to wick, pull, draw, or otherwise attract liquid from the tissue site 104 through the interface manifold 120. In the fluid management assembly 144, the liquid may initially come into contact with the fluid transport layer 176. The fluid transport layer 176 may distribute the liquid laterally along the surface of the fluid transport layer 176 as described above for contact with or absorption within the offloading layer 180.
As liquid from the tissue site 104 proceeds toward the offloading layer 180 of the dressing 124, 232, the liquid may be deflected or preferentially directed toward the target region 190 of the offloading layer 180 by the liquid deflector 178. When the liquid contacts the target region 190 of the offloading layer 180, the target region 190 may swell, expand, or otherwise increase in thickness from absorption of the liquid. The force offloading region 188 may be substantially free of contact with the liquid due to the deflection provided by the liquid deflector 178, and thus, the force offloading region 188 may be substantially or completely free of such swelling or expansion. However, the force offloading region 188 may exhibit some swelling or expansion as liquid from the tissue site 104 migrates through the offloading layer 180 from the target region 190 to the force offloading region 188. Although some expansion may occur in the force offloading region 188, the target region 190 of the offloading layer 180 may swell, expand, or otherwise increase in thickness more than the force offloading region 188. In this manner, the target region 190 may swell, expand, or otherwise increase in thickness around the periphery 107 of the tissue site 104, which can offload forces experienced at the tissue site 104 to tissue around or surrounding the tissue site 104. Accordingly, the dressing 124, 232 may provide physical pressure offloading at the tissue site 104 as a by-product of the liquid from the tissue site 104 being stored or otherwise managed within the dressing 124, 232. Removing or reducing this physical pressure, compressive force, or other force from the tissue site 104 may improve the healing of the tissue site 104.
Liquid pooling may occur in the target region 190 of the offloading layer 180 due to the deflection of liquid from the tissue site 104 to the target region 190. Such liquid pooling may cause gel-blocking, clogging, or other blockage within the offloading layer 180, which may preclude or otherwise slow the migration of the liquid through the offloading layer 180 from the target region 190 to the offloading region 188. In this manner, liquid from the tissue site 104 may preferentially be distributed around or circumferentially about the target region 190 and the periphery 107 of the tissue site 104, rather than to the force offloading region 188. However, after extended use of the dressing 124, 232, the liquid from the tissue site 104 may eventually wick or migrate from the target region 190 into contact with the force offloading region 188. Thus, some swelling, expansion, or increase in thickness may occur in the force offloading region 188 after extended use. If the liquid migrates sufficiently into the force offloading region 188 to cause localized swelling in the dressing 124, 232 over, covering, or adjacent to an area in which the offloading of force is desired, such as the tissue site 104, the dressing 124, 232 may require removal or replacement.
As described above, the dressing guide indicator 230 may be positioned substantially in the center of the force offloading region 188 for positioning the dressing 124, 232 over, covering, or adjacent to the tissue site 104 where the offloading of forces may be desired. Removal or replacement of the dressing 124, 232 may be recommended if the liquid from the tissue site 104 migrates through the offloading layer 180 proximate to or in contact with the dressing guide indicator 230 in the force offloading region 188. Accordingly, the dressing guide indicator 230 may indicate when the dressing 124, 232 requires removal or replacement in addition to assisting the user with initial placement of the dressing 124, 232 at the tissue site 104. Further, the color change dye referenced above may further alert the user when the dressing 124, 232 may need replacement by providing a color change when the liquid contacts or reacts with the color change dye.
Referring generally to the drawings, in some embodiments, a method of offloading a force at the tissue site 104 may include positioning the offloading layer 180 at the tissue site 104. The target region 190 of the offloading layer 180 may be positioned at the periphery 107 of the tissue site 104. Further, the method may include expanding at least the target region 190 of the offloading layer 180. In some embodiments, the target region 190 may be expanded more than the force offloading region 188. Further, in some embodiments, the offloading region 188 may be substantially free of expansion after expanding the target region 190 of the offloading layer 180.
In some embodiments, expanding at least the target region 190 of the offloading layer 180 may include increasing a thickness of at least the target region 190 of the offloading layer 180 in a direction normal to the tissue site 104. Further, in some embodiments, expanding at least the target region 190 of the offloading layer 180 may include deflecting liquid from the tissue site 104 into contact with the target region 190. Further, in some embodiments, expanding at least the target region 190 of the offloading layer 180 may include positioning the liquid deflector 178 between the tissue site 104 and the offloading layer 180.
In some embodiments, the method may include covering the force offloading region 188 of the offloading layer 180 with the liquid deflector 178. In some embodiments, the target region 190 of the offloading layer 180 may extend beyond the periphery 200 of the liquid deflector 178 such that liquid from the tissue site 104 is deflected around the periphery 200 of the liquid deflector 178 and into contact with the target region 190. Further, in some embodiments, the method may include covering the force offloading region 188 and the target region 190 of the offloading layer 180 with the liquid deflector 178, wherein the liquid deflector 178 includes the liquid deflector perforations 212 disposed through at least a portion of the liquid deflector 178 covering the target region 190.
In some embodiments, the method may include positioning the target region 190 of the offloading layer 180 at the periphery 200 of the liquid deflector 178. Further, in some embodiments, the method may include positioning the fluid transport layer 176 between the tissue site 104 and the liquid deflector 178; and wicking the liquid from the tissue site 104 along the fluid transport layer 176 in a lateral direction normal to a thickness of the fluid transport layer 176.
Although this specification describes advantages in the context of certain illustrative, non-limiting embodiments, various changes, substitutions, permutations, and alterations may be made without departing from the scope of the appended claims. Further, any feature described in connection with any one embodiment may also be applicable to any other embodiment.
This application is a divisional of U.S. patent application Ser. No. 14/965,675, filed Dec. 10, 2015, which claims the benefit, under 35 USC 119(e), of the filing of U.S. Provisional Patent Application No. 62/092,991, entitled “Dressing with Offloading Capability,” filed Dec. 17, 2014, which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
1944834 | Bennett | Jan 1934 | A |
2399545 | Davis | Apr 1946 | A |
2547758 | Keeling | Apr 1951 | A |
2552664 | Burdine | May 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2860081 | Eiken | Nov 1958 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3122140 | Crowe, Jr. | Feb 1964 | A |
3172808 | Baumann et al. | Mar 1965 | A |
3183116 | Schaar | May 1965 | A |
3214502 | Schaar | Oct 1965 | A |
3367332 | Groves | Feb 1968 | A |
3376868 | Mondiadis | Apr 1968 | A |
3515270 | Yang et al. | Jun 1970 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3645835 | Hodgson | Feb 1972 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3742952 | Magers et al. | Jul 1973 | A |
3762415 | Morrison | Oct 1973 | A |
3774611 | Tussey et al. | Nov 1973 | A |
3777016 | Gilbert | Dec 1973 | A |
3779243 | Tussey et al. | Dec 1973 | A |
3811438 | Economou | May 1974 | A |
3826254 | Mellor | Jul 1974 | A |
3852823 | Jones | Dec 1974 | A |
3903882 | Augurt | Sep 1975 | A |
3967624 | Milnamow | Jul 1976 | A |
3983297 | Ono et al. | Sep 1976 | A |
4060081 | Yannas et al. | Nov 1977 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4141361 | Snyder | Feb 1979 | A |
4163822 | Walter | Aug 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4174664 | Arnott et al. | Nov 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4323069 | Ahr et al. | Apr 1982 | A |
4333468 | Geist | Jun 1982 | A |
4343848 | Leonard, Jr. | Aug 1982 | A |
4360015 | Mayer | Nov 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4414970 | Berry | Nov 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4529402 | Weilbacher et al. | Jul 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4600146 | Ohno | Jul 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4617021 | Leuprecht | Oct 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664652 | Weilbacher | May 1987 | A |
4664662 | Webster | May 1987 | A |
4705543 | Kertzman | Nov 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4715857 | Juhasz et al. | Dec 1987 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4753230 | Carus et al. | Jun 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4773408 | Cilento et al. | Sep 1988 | A |
4787888 | Fox | Nov 1988 | A |
4826494 | Richmond et al. | May 1989 | A |
4832008 | Gilman | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4842594 | Ness | Jun 1989 | A |
4848364 | Bosman | Jul 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4871611 | LeBel | Oct 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4919654 | Kalt | Apr 1990 | A |
4930997 | Bennett | Jun 1990 | A |
4935005 | Haines | Jun 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4961493 | Kaihatsu | Oct 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4981474 | Bopp et al. | Jan 1991 | A |
4985019 | Michelson | Jan 1991 | A |
4995382 | Lang et al. | Feb 1991 | A |
4996128 | Aldecoa et al. | Feb 1991 | A |
5010883 | Rawlings et al. | Apr 1991 | A |
5018515 | Gilman | May 1991 | A |
5025783 | Lamb | Jun 1991 | A |
5028597 | Kodama et al. | Jul 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5042500 | Norlien et al. | Aug 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092323 | Riedel et al. | Mar 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5112323 | Winkler et al. | May 1992 | A |
5127601 | Schroeder | Jul 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5151314 | Brown | Sep 1992 | A |
5152757 | Eriksson | Oct 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5180375 | Feibus | Jan 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5244457 | Karami et al. | Sep 1993 | A |
5246775 | Loscuito | Sep 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5266372 | Arakawa et al. | Nov 1993 | A |
5270358 | Asmus | Dec 1993 | A |
5271987 | Iskra | Dec 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5342329 | Croquevielle | Aug 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5356386 | Goldberg et al. | Oct 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5384174 | Ward et al. | Jan 1995 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5419769 | Devlin et al. | May 1995 | A |
5423778 | Eriksson et al. | Jun 1995 | A |
5429590 | Saito et al. | Jul 1995 | A |
5437622 | Carion | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5445604 | Lang | Aug 1995 | A |
5447492 | Cartmell et al. | Sep 1995 | A |
5458938 | Nygard et al. | Oct 1995 | A |
5501212 | Psaros | Mar 1996 | A |
5522808 | Skalla | Jun 1996 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5549585 | Maher et al. | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5585178 | Calhoun et al. | Dec 1996 | A |
5599292 | Yoon | Feb 1997 | A |
5607388 | Ewall | Mar 1997 | A |
5611373 | Ashcraft | Mar 1997 | A |
5634893 | Rishton | Jun 1997 | A |
5635201 | Fabo | Jun 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5641506 | Talke et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5653224 | Johnson | Aug 1997 | A |
5678564 | Lawrence et al. | Oct 1997 | A |
5710233 | Meckel et al. | Jan 1998 | A |
5714225 | Hansen et al. | Feb 1998 | A |
5736470 | Schneberger et al. | Apr 1998 | A |
5759570 | Arnold | Jun 1998 | A |
5776119 | Bilbo et al. | Jul 1998 | A |
5807295 | Hutcheon et al. | Sep 1998 | A |
5830201 | George et al. | Nov 1998 | A |
5878971 | Minnema | Mar 1999 | A |
5902439 | Pike et al. | May 1999 | A |
5919476 | Fischer et al. | Jul 1999 | A |
5941863 | Guidotti et al. | Aug 1999 | A |
5964252 | Simmons et al. | Oct 1999 | A |
5981822 | Addison | Nov 1999 | A |
5998561 | Jada | Dec 1999 | A |
6071267 | Zamierowski | Jun 2000 | A |
6083616 | Dressler | Jul 2000 | A |
6086995 | Smith | Jul 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6159877 | Scholz et al. | Dec 2000 | A |
6174306 | Fleischmann | Jan 2001 | B1 |
6191335 | Robinson | Feb 2001 | B1 |
6201164 | Wulff et al. | Mar 2001 | B1 |
6228485 | Leiter | May 2001 | B1 |
6238762 | Friedland et al. | May 2001 | B1 |
6241747 | Ruff | Jun 2001 | B1 |
6262329 | Brunsveld et al. | Jul 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6457200 | Tanaka et al. | Oct 2002 | B1 |
6458109 | Henley et al. | Oct 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6495229 | Carte et al. | Dec 2002 | B1 |
6503855 | Menzies et al. | Jan 2003 | B1 |
6548727 | Swenson | Apr 2003 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6566575 | Stickels et al. | May 2003 | B1 |
6566577 | Addison et al. | May 2003 | B1 |
6626891 | Ohmstede | Sep 2003 | B2 |
6627215 | Dale et al. | Sep 2003 | B1 |
6648862 | Watson | Nov 2003 | B2 |
6680113 | Lucast et al. | Jan 2004 | B1 |
6685681 | Lockwood et al. | Feb 2004 | B2 |
6693180 | Lee et al. | Feb 2004 | B2 |
6695823 | Lina et al. | Feb 2004 | B1 |
6752794 | Lockwood et al. | Jun 2004 | B2 |
6787682 | Gilman | Sep 2004 | B2 |
6806214 | Li | Oct 2004 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6855135 | Lockwood et al. | Feb 2005 | B2 |
6856821 | Johnson | Feb 2005 | B2 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
7070584 | Johnson et al. | Jul 2006 | B2 |
7154017 | Sigurjonsson et al. | Dec 2006 | B2 |
7402721 | Sigurjonsson et al. | Jul 2008 | B2 |
7569742 | Haggstrom et al. | Aug 2009 | B2 |
7645269 | Zamierowski | Jan 2010 | B2 |
7846141 | Weston | Dec 2010 | B2 |
8062273 | Weston | Nov 2011 | B2 |
8216198 | Heagle et al. | Jul 2012 | B2 |
8251979 | Malhi | Aug 2012 | B2 |
8257327 | Blott et al. | Sep 2012 | B2 |
8298197 | Eriksson et al. | Oct 2012 | B2 |
8398614 | Blott et al. | Mar 2013 | B2 |
8449509 | Weston | May 2013 | B2 |
8529532 | Pinto et al. | Sep 2013 | B2 |
8529548 | Blott et al. | Sep 2013 | B2 |
8535296 | Blott et al. | Sep 2013 | B2 |
8551060 | Schuessler et al. | Oct 2013 | B2 |
8568386 | Malhi | Oct 2013 | B2 |
8632523 | Eriksson et al. | Jan 2014 | B2 |
8679081 | Heagle et al. | Mar 2014 | B2 |
8764732 | Hartwell | Jul 2014 | B2 |
8834451 | Blott et al. | Sep 2014 | B2 |
8920830 | Mathies | Dec 2014 | B2 |
8926592 | Blott et al. | Jan 2015 | B2 |
9017302 | Vitaris et al. | Apr 2015 | B2 |
9192444 | Locke et al. | Nov 2015 | B2 |
9198801 | Weston | Dec 2015 | B2 |
9211365 | Weston | Dec 2015 | B2 |
9289542 | Blott et al. | Mar 2016 | B2 |
9572719 | Long et al. | Feb 2017 | B2 |
9877873 | Coulthard et al. | Jan 2018 | B2 |
9956120 | Locke | May 2018 | B2 |
11096830 | Pratt et al. | Aug 2021 | B2 |
20010030304 | Kohda et al. | Oct 2001 | A1 |
20010051178 | Blatchford et al. | Dec 2001 | A1 |
20020009568 | Bries et al. | Jan 2002 | A1 |
20020016346 | Brandt et al. | Feb 2002 | A1 |
20020065494 | Lockwood et al. | May 2002 | A1 |
20020077661 | Saadat | Jun 2002 | A1 |
20020090496 | Kim et al. | Jul 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020119292 | Venkatasanthanam et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020130064 | Adams et al. | Sep 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20020150270 | Werner | Oct 2002 | A1 |
20020150720 | Howard et al. | Oct 2002 | A1 |
20020161346 | Lockwood et al. | Oct 2002 | A1 |
20020164346 | Nicolette | Nov 2002 | A1 |
20020183702 | Henley et al. | Dec 2002 | A1 |
20020198504 | Risk et al. | Dec 2002 | A1 |
20030014022 | Lockwood et al. | Jan 2003 | A1 |
20030070680 | Smith et al. | Apr 2003 | A1 |
20030109855 | Solem et al. | Jun 2003 | A1 |
20030158577 | Ginn et al. | Aug 2003 | A1 |
20030199800 | Levin | Oct 2003 | A1 |
20030208175 | Gross et al. | Nov 2003 | A1 |
20030212357 | Pace | Nov 2003 | A1 |
20030225347 | Argenta et al. | Dec 2003 | A1 |
20030225355 | Butler | Dec 2003 | A1 |
20040002676 | Siegwart et al. | Jan 2004 | A1 |
20040030304 | Hunt et al. | Feb 2004 | A1 |
20040064132 | Boehringer et al. | Apr 2004 | A1 |
20040077984 | Worthley | Apr 2004 | A1 |
20040082925 | Patel | Apr 2004 | A1 |
20040099268 | Smith et al. | May 2004 | A1 |
20040118401 | Smith et al. | Jun 2004 | A1 |
20040127836 | Sigurjonsson et al. | Jul 2004 | A1 |
20040127862 | Bubb et al. | Jul 2004 | A1 |
20040133143 | Burton et al. | Jul 2004 | A1 |
20040163278 | Caspers et al. | Aug 2004 | A1 |
20040186239 | Qin et al. | Sep 2004 | A1 |
20040219337 | Langley et al. | Nov 2004 | A1 |
20040230179 | Shehada | Nov 2004 | A1 |
20040241214 | Kirkwood et al. | Dec 2004 | A1 |
20050034731 | Rousseau et al. | Feb 2005 | A1 |
20050054998 | Poccia et al. | Mar 2005 | A1 |
20050058810 | Dodge, II | Mar 2005 | A1 |
20050059918 | Sigurjonsson et al. | Mar 2005 | A1 |
20050065484 | Watson | Mar 2005 | A1 |
20050070858 | Lockwood et al. | Mar 2005 | A1 |
20050101940 | Radl et al. | May 2005 | A1 |
20050113732 | Lawry | May 2005 | A1 |
20050124925 | Scherpenborg | Jun 2005 | A1 |
20050131327 | Lockwood et al. | Jun 2005 | A1 |
20050137539 | Biggie et al. | Jun 2005 | A1 |
20050143694 | Schmidt et al. | Jun 2005 | A1 |
20050158442 | Westermann et al. | Jul 2005 | A1 |
20050159695 | Cullen et al. | Jul 2005 | A1 |
20050161042 | Fudge et al. | Jul 2005 | A1 |
20050163978 | Strobech et al. | Jul 2005 | A1 |
20050214376 | Faure et al. | Sep 2005 | A1 |
20050233072 | Stephan et al. | Oct 2005 | A1 |
20050256437 | Silcock et al. | Nov 2005 | A1 |
20050261642 | Weston | Nov 2005 | A1 |
20050261643 | Bybordi et al. | Nov 2005 | A1 |
20050277860 | Jensen | Dec 2005 | A1 |
20050283105 | Heaton et al. | Dec 2005 | A1 |
20060014030 | Langen et al. | Jan 2006 | A1 |
20060020235 | Siniaguine | Jan 2006 | A1 |
20060079852 | Bubb et al. | Apr 2006 | A1 |
20060083776 | Bott et al. | Apr 2006 | A1 |
20060154546 | Murphy et al. | Jul 2006 | A1 |
20060236979 | Stolarz et al. | Oct 2006 | A1 |
20060241542 | Gudnason et al. | Oct 2006 | A1 |
20060271020 | Huang et al. | Nov 2006 | A1 |
20070027414 | Hoffman et al. | Feb 2007 | A1 |
20070028526 | Woo et al. | Feb 2007 | A1 |
20070078366 | Haggstrom et al. | Apr 2007 | A1 |
20070135787 | Raidel | Jun 2007 | A1 |
20070161937 | Aali | Jul 2007 | A1 |
20070185426 | Ambrosio et al. | Aug 2007 | A1 |
20070190281 | Hooft | Aug 2007 | A1 |
20070225663 | Watt et al. | Sep 2007 | A1 |
20070265585 | Joshi et al. | Nov 2007 | A1 |
20070265586 | Joshi et al. | Nov 2007 | A1 |
20070283962 | Doshi et al. | Dec 2007 | A1 |
20080009812 | Riesinger | Jan 2008 | A1 |
20080027366 | Da Silva Macedo | Jan 2008 | A1 |
20080082059 | Fink et al. | Apr 2008 | A1 |
20080090085 | Kawate et al. | Apr 2008 | A1 |
20080095979 | Hatanaka et al. | Apr 2008 | A1 |
20080119802 | Riesinger | May 2008 | A1 |
20080138591 | Graham et al. | Jun 2008 | A1 |
20080149104 | Eifler | Jun 2008 | A1 |
20080173389 | Mehta et al. | Jul 2008 | A1 |
20080195017 | Robinson et al. | Aug 2008 | A1 |
20080225663 | Smith et al. | Sep 2008 | A1 |
20080243044 | Hunt et al. | Oct 2008 | A1 |
20080269657 | Brenneman et al. | Oct 2008 | A1 |
20080271804 | Biggie et al. | Nov 2008 | A1 |
20090025724 | Herron, Jr. | Jan 2009 | A1 |
20090088719 | Driskell | Apr 2009 | A1 |
20090093779 | Riesinger | Apr 2009 | A1 |
20090124988 | Coulthard | May 2009 | A1 |
20090177172 | Wilkes | Jul 2009 | A1 |
20090216168 | Eckstein | Aug 2009 | A1 |
20090216170 | Robinson et al. | Aug 2009 | A1 |
20090216204 | Bhavaraju et al. | Aug 2009 | A1 |
20090227968 | Vess | Sep 2009 | A1 |
20090227969 | Jaeb et al. | Sep 2009 | A1 |
20090234306 | Vitaris | Sep 2009 | A1 |
20090234307 | Vitaris | Sep 2009 | A1 |
20090264807 | Haggstrom et al. | Oct 2009 | A1 |
20090292264 | Hudspeth et al. | Nov 2009 | A1 |
20090299251 | Buan | Dec 2009 | A1 |
20090312662 | Colman et al. | Dec 2009 | A1 |
20090326487 | Vitaris | Dec 2009 | A1 |
20090326488 | Budig et al. | Dec 2009 | A1 |
20100028390 | Cleary et al. | Feb 2010 | A1 |
20100030170 | Keller et al. | Feb 2010 | A1 |
20100030178 | MacMeccan et al. | Feb 2010 | A1 |
20100063467 | Addison et al. | Mar 2010 | A1 |
20100069863 | Olson | Mar 2010 | A1 |
20100106106 | Heaton et al. | Apr 2010 | A1 |
20100106118 | Heaton et al. | Apr 2010 | A1 |
20100111919 | Abuzaina et al. | May 2010 | A1 |
20100125259 | Olson | May 2010 | A1 |
20100159192 | Cotton | Jun 2010 | A1 |
20100168633 | Bougherara et al. | Jul 2010 | A1 |
20100168635 | Freiding et al. | Jul 2010 | A1 |
20100185163 | Heagle | Jul 2010 | A1 |
20100191197 | Braga et al. | Jul 2010 | A1 |
20100212768 | Resendes | Aug 2010 | A1 |
20100226824 | Ophir et al. | Sep 2010 | A1 |
20100262090 | Riesinger | Oct 2010 | A1 |
20100267302 | Kantner et al. | Oct 2010 | A1 |
20100268144 | Lu et al. | Oct 2010 | A1 |
20100286582 | Simpson et al. | Nov 2010 | A1 |
20100305490 | Coulthard | Dec 2010 | A1 |
20100305524 | Vess et al. | Dec 2010 | A1 |
20100312159 | Aali et al. | Dec 2010 | A1 |
20100318072 | Johnston et al. | Dec 2010 | A1 |
20100324516 | Braga et al. | Dec 2010 | A1 |
20110046585 | Weston | Feb 2011 | A1 |
20110054423 | Blott et al. | Mar 2011 | A1 |
20110118683 | Weston | May 2011 | A1 |
20110137271 | Andresen et al. | Jun 2011 | A1 |
20110160686 | Ueda et al. | Jun 2011 | A1 |
20110171480 | Mori et al. | Jul 2011 | A1 |
20110172617 | Riesinger | Jul 2011 | A1 |
20110201984 | Dubrow et al. | Aug 2011 | A1 |
20110224631 | Simmons et al. | Sep 2011 | A1 |
20110229688 | Cotton | Sep 2011 | A1 |
20110237969 | Eckerbom et al. | Sep 2011 | A1 |
20110244010 | Doshi | Oct 2011 | A1 |
20110257612 | Locke et al. | Oct 2011 | A1 |
20110257617 | Franklin | Oct 2011 | A1 |
20110280926 | Junginger | Nov 2011 | A1 |
20110281084 | Ashwell | Nov 2011 | A1 |
20110282309 | Adie et al. | Nov 2011 | A1 |
20120016322 | Coulthard et al. | Jan 2012 | A1 |
20120019031 | Bessert | Jan 2012 | A1 |
20120036733 | Dehn | Feb 2012 | A1 |
20120040131 | Speer | Feb 2012 | A1 |
20120059339 | Gundersen | Mar 2012 | A1 |
20120095380 | Gergely et al. | Apr 2012 | A1 |
20120109034 | Locke et al. | May 2012 | A1 |
20120123359 | Reed | May 2012 | A1 |
20120143157 | Riesinger | Jun 2012 | A1 |
20120237722 | Seyler et al. | Sep 2012 | A1 |
20120258271 | Maughan | Oct 2012 | A1 |
20120310186 | Moghe et al. | Dec 2012 | A1 |
20130030394 | Locke et al. | Jan 2013 | A1 |
20130053746 | Roland et al. | Feb 2013 | A1 |
20130066285 | Locke et al. | Mar 2013 | A1 |
20130096518 | Hall et al. | Apr 2013 | A1 |
20130098360 | Hurmez et al. | Apr 2013 | A1 |
20130116661 | Coward et al. | May 2013 | A1 |
20130150763 | Mirzaei et al. | Jun 2013 | A1 |
20130152945 | Locke et al. | Jun 2013 | A1 |
20130165887 | Eric Mitchell et al. | Jun 2013 | A1 |
20130172843 | Kurata | Jul 2013 | A1 |
20130189339 | Vachon | Jul 2013 | A1 |
20130261585 | Lee | Oct 2013 | A1 |
20130296760 | Ramminger et al. | Nov 2013 | A1 |
20130304007 | Toth | Nov 2013 | A1 |
20130330486 | Shields | Dec 2013 | A1 |
20140039423 | Riesinger | Feb 2014 | A1 |
20140039424 | Locke | Feb 2014 | A1 |
20140058309 | Addison et al. | Feb 2014 | A1 |
20140107561 | Dorian et al. | Apr 2014 | A1 |
20140107562 | Dorian et al. | Apr 2014 | A1 |
20140141197 | Hill et al. | May 2014 | A1 |
20140155849 | Heaton et al. | Jun 2014 | A1 |
20140163491 | Schuessler et al. | Jun 2014 | A1 |
20140171851 | Addison | Jun 2014 | A1 |
20140178564 | Patel | Jun 2014 | A1 |
20140249495 | Mumby et al. | Sep 2014 | A1 |
20140309574 | Cotton | Oct 2014 | A1 |
20140336557 | Durdag et al. | Nov 2014 | A1 |
20140350494 | Hartwell et al. | Nov 2014 | A1 |
20140352073 | Goenka | Dec 2014 | A1 |
20150030848 | Goubard | Jan 2015 | A1 |
20150045752 | Grillitsch et al. | Feb 2015 | A1 |
20150057625 | Coulthard | Feb 2015 | A1 |
20150080788 | Blott et al. | Mar 2015 | A1 |
20150080815 | Chakravarthy et al. | Mar 2015 | A1 |
20150094646 | Vinton | Apr 2015 | A1 |
20150119830 | Luckemeyer et al. | Apr 2015 | A1 |
20150119833 | Coulthard et al. | Apr 2015 | A1 |
20150119834 | Locke et al. | Apr 2015 | A1 |
20150141941 | Allen et al. | May 2015 | A1 |
20150190286 | Allen et al. | Jul 2015 | A1 |
20150209200 | Fouillet et al. | Jul 2015 | A1 |
20150217077 | Scampoli et al. | Aug 2015 | A1 |
20150290041 | Richard | Oct 2015 | A1 |
20160000610 | Riesinger | Jan 2016 | A1 |
20160067107 | Cotton | Mar 2016 | A1 |
20160144084 | Collinson et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
550575 | Mar 1986 | AU |
745271 | Mar 2002 | AU |
755496 | Dec 2002 | AU |
2009200608 | Oct 2009 | AU |
2005436 | Jun 1990 | CA |
87101823 | Aug 1988 | CN |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
29 504 378 | Sep 1995 | DE |
202004018245 | Jul 2005 | DE |
202014100383 | Feb 2015 | DE |
0059049 | Sep 1982 | EP |
0097517 | Jan 1984 | EP |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
0251810 | Jan 1988 | EP |
0275353 | Jul 1988 | EP |
0358302 | Mar 1990 | EP |
0538917 | Apr 1993 | EP |
0630629 | Dec 1994 | EP |
0659390 | Jun 1995 | EP |
0633758 | Oct 1996 | EP |
1002846 | May 2000 | EP |
1018967 | Jul 2000 | EP |
2578193 | Apr 2013 | EP |
692578 | Jun 1953 | GB |
1386800 | Mar 1975 | GB |
2195255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2205243 | Dec 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 329 127 | Mar 1999 | GB |
2 333 965 | Aug 1999 | GB |
2377939 | Jan 2003 | GB |
2392836 | Mar 2004 | GB |
2393655 | Apr 2004 | GB |
2425487 | Nov 2006 | GB |
2452720 | Mar 2009 | GB |
2496310 | May 2013 | GB |
1961003393 | Feb 1961 | JP |
S62139523 | Sep 1987 | JP |
S62-275456 | Nov 1987 | JP |
2005205120 | Aug 2005 | JP |
2007254515 | Oct 2007 | JP |
4129536 | Aug 2008 | JP |
2012050274 | Mar 2012 | JP |
71559 | Apr 2002 | SG |
8002182 | Oct 1980 | WO |
8704626 | Aug 1987 | WO |
8707164 | Dec 1987 | WO |
90010424 | Sep 1990 | WO |
93009727 | May 1993 | WO |
9420041 | Sep 1994 | WO |
9605873 | Feb 1996 | WO |
9622753 | Aug 1996 | WO |
9718007 | May 1997 | WO |
9913793 | Mar 1999 | WO |
9965542 | Dec 1999 | WO |
0136188 | May 2001 | WO |
0160296 | Aug 2001 | WO |
0168021 | Sep 2001 | WO |
0185248 | Nov 2001 | WO |
0185249 | Nov 2001 | WO |
0190465 | Nov 2001 | WO |
0243743 | Jun 2002 | WO |
02062403 | Aug 2002 | WO |
03-018098 | Mar 2003 | WO |
03045294 | Jun 2003 | WO |
03045492 | Jun 2003 | WO |
03053484 | Jul 2003 | WO |
2004024197 | Mar 2004 | WO |
2004037334 | May 2004 | WO |
2004112852 | Dec 2004 | WO |
2005002483 | Jan 2005 | WO |
2005062896 | Jul 2005 | WO |
2005105176 | Nov 2005 | WO |
2005123170 | Dec 2005 | WO |
2007022097 | Feb 2007 | WO |
2007030601 | Mar 2007 | WO |
2007070269 | Jun 2007 | WO |
2007085396 | Aug 2007 | WO |
2007087811 | Aug 2007 | WO |
2007113597 | Oct 2007 | WO |
2007133618 | Nov 2007 | WO |
2008026117 | Mar 2008 | WO |
2008041926 | Apr 2008 | WO |
2008048527 | Apr 2008 | WO |
2008054312 | May 2008 | WO |
2008082444 | Jul 2008 | WO |
2008100440 | Aug 2008 | WO |
2008104609 | Sep 2008 | WO |
2008131895 | Nov 2008 | WO |
2008149107 | Dec 2008 | WO |
2009002260 | Dec 2008 | WO |
2009066105 | May 2009 | WO |
2009066106 | May 2009 | WO |
2009081134 | Jul 2009 | WO |
2009089016 | Jul 2009 | WO |
2009124100 | Oct 2009 | WO |
2009126103 | Oct 2009 | WO |
2010011148 | Jan 2010 | WO |
2010016791 | Feb 2010 | WO |
2010032728 | Mar 2010 | WO |
2010056977 | May 2010 | WO |
2010129299 | Nov 2010 | WO |
2011008497 | Jan 2011 | WO |
2011049562 | Apr 2011 | WO |
2011043786 | Apr 2011 | WO |
2011115908 | Sep 2011 | WO |
2011121127 | Oct 2011 | WO |
2011130570 | Oct 2011 | WO |
2011135284 | Nov 2011 | WO |
2011162862 | Dec 2011 | WO |
2012112204 | Aug 2012 | WO |
2012104584 | Aug 2012 | WO |
2012140378 | Oct 2012 | WO |
2012143665 | Oct 2012 | WO |
2013009239 | Jan 2013 | WO |
2013066426 | May 2013 | WO |
2013090810 | Jun 2013 | WO |
2014022400 | Feb 2014 | WO |
2014039557 | Mar 2014 | WO |
2014078518 | May 2014 | WO |
2014097069 | Jun 2014 | WO |
2014113253 | Jul 2014 | WO |
2014140608 | Sep 2014 | WO |
2014143488 | Sep 2014 | WO |
2015065615 | May 2015 | WO |
2015130471 | Sep 2015 | WO |
2017048866 | Mar 2017 | WO |
Entry |
---|
Office Action for related U.S. Appl. No. 15/600,451, dated Nov. 27, 2019. |
Office Action for related U.S. Appl. No. 14/965,675, dated Dec. 12, 2018. |
Office Action for related U.S. Appl. No. 14/619,714, dated Dec. 3, 2018. |
Office Action for related U.S. Appl. No. 14/630,290, dated Jan. 11, 2019. |
Office Action for related U.S. Appl. No. 15/265,718, dated Feb. 7, 2019. |
Extended European Search Report for related application 18193559.4, mailed Dec. 17, 2018. |
Office Action for related U.S. Appl. No. 14/080,348, dated Apr. 12, 2019. |
Japanese Notice of Rejection for related application 2016-570333, dated Feb. 26, 2019. |
Office Action for related U.S. Appl. No. 15/410,991, dated May 2, 2019. |
Office Action for related U.S. Appl. No. 15/314,426, dated Aug. 29, 2019. |
Louis C. Argenta, MD and Michael J. Morykwas, PHD; Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience; Annals of Plastic Surgery; vol. 38, No. 6, Jun. 1997; pp. 563-576. |
Susan Mendez-Eatmen, RN; “When wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn II, MD et al.: Negative-Pressure Dressings as a Bolster for Skin Grafts; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457; Lippincott Williams & Wilkins, Inc., Philidelphia, PA, USA. |
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letter to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK. |
S.E. Greer, et al. “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), 53, pp. 484-487. |
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639. |
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; Jan. 8, 1999. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; Jun. 8, 1999. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; Jan. 15, 1998 & Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; Sep. 3, 1997. |
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov. Yu.N., et al; “Active Wound Drainage”, Vestnki Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu.A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirugi, Oct. 1988, pp. 48-52, and 8 page English translation thereof. |
Davydov, Yu.A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2. |
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
Arnljots, Björn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213. |
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous of Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986); pp. 94-96 (certified translation). |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
G. Živadinovi?, V. ?uki?, Ž. Maksimovi?, ?. Radak, and P. Peška, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (certified translation). |
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513. |
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I). |
C.E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.a. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”). |
V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians; Jul. 2007. |
Australian Office Action for related application 2018278874, dated Feb. 12, 2020. |
Office Action for related U.S. Appl. No. 14/630,290, dated Apr. 30, 2020. |
Office Action for related U.S. Appl. No. 15/793,044, dated May 13, 2020. |
EP Informal Search Report for related application 19186600.3. |
Office Action for related U.S. Appl. No. 15/884,198, dated May 19, 2020. |
International Search Report and Written Opinion for PCT/GB2008/003075 mailed Mar. 11, 2010. |
International Search Report and Written Opinion for PCT/GB2008/004216 dated Jul. 2, 2009. |
International Search Report and Written Opinion for PCT/GB2012/000099 dated May 2, 2012. |
EP Examination Report for corresponding application 12705381.7, dated May 22, 2014. |
International Search Report and Written Opinion for PCT/US2012/069893 dated Apr. 8, 2013. |
International Search Report and Written Opinion for PCT/US2013/070070 dated Jan. 29, 2014. |
International Search Report and Written Opinion for PCT/US2014/016320 dated Apr. 15, 2014. |
International Search Report and Written Opinion for PCT/US2014/056566 dated Dec. 5, 2014. |
International Search Report and Written Opinion for PCT/US2014/056508 dated Dec. 9, 2014. |
International Search Report and Written Opinion for PCT/US2014/056524 dated Dec. 11, 2014. |
International Search Report and Written Opinion for PCT/US2014/056594 dated Dec. 2, 2014. |
International Search Report and Written opinion for PCT Application PCT/US2009/036222, mailed Dec. 15, 2009. |
International Search Report and Written Opinion date mailed Oct. 19, 2010; PCT International Application No. PCT/US2009/036217. |
NPD 1000 Negative Pressure Would Therapy System, Kalypto Medical, pp. 1-4, dated Sep. 2008. |
International Search Report and Written Opinion for PCT/US2014/061251 date mailed May 8, 2015. |
International Search Report and Written Opinion for PCT/IB2013/060862 date mailed Jun. 26, 2014. |
International Search Report and Written Opinion for PCT/US2015/015493 mailed May 4, 2015. |
Extended European Search Report for corresponding Application No. 15194949.2, mailed Mar. 11, 2016. |
European Search Report for corresponding EPSN 15157408.4 published on Sep. 30, 2015. |
International Search Report and Written Opinion for PCT/US2015/034289 mailed Aug. 21, 2015. |
International Search Report and Written Opinion for PCT/US2015/065135 mailed Apr. 4, 2016. |
International Search Report and Written Opinion for PCT/GB2012/050822 mailed Aug. 8, 2012. |
International Search Report and Written Opinion for PCT/US2015/029037 mailed Sep. 4, 2015. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2011/028344, mailed Jun. 1, 2011. |
European Search Report for EP 11714148.1, dated May 2, 2014. |
European Search Report for corresponding Application No. 15192606.0 mailed Feb. 24, 2016. |
International Search Report and Written Opinion for corresponding PCT/US2014/048081 mailed Nov. 14, 2014. |
International Search Report and Written Opinion for corresponding PCT/US2014/010704 mailed Mar. 25, 2014. |
European Examination Report dated Jun. 29, 2016, corresponding to EP Application No. 16173614.5. |
International Search Report and Written Opinion for corresponding PCT application PCT/US2016/051768 issued Dec. 15, 2016. |
European Search Report for corresponding EP Application 171572787 issued on Jun. 6, 2017. |
International Search Report and Written Opinion for corresponding application PCT/US2016/031397, mailed Aug. 8, 2016. |
European Search Report for corresponding application 17167872.5, mailed Aug. 14, 2017. |
M. Waring et al., “Cell attachment to adhesive dressing: qualitative and quantitative analysis”, Wounds, UK, (2008), vol. 4, No. 3, pp. 35-47. |
R. White, “Evidence for atraumatic soft silicone wound dressing use”. Wound, UK (2005), vol. 3, pp. 104-108, Mepilex Border docs, (2001). |
European Search Report for corresponding application 17183683.6, mailed Sep. 18, 2017. |
European Search Report for corresponding application 17164033.7, mailed Oct. 13, 2017. |
Extended European Search Report for corresponding application 17191970.7, mailed Oct. 26, 2017. |
Japanese office action for related application 2015-547246, mailed Sep. 5, 2017. |
Office Action for related U.S. Appl. No. 13/982,650, mailed Dec. 14, 2017. |
Australian Office Action for related application 2013344686, mailed Nov. 28, 2017. |
Office Action for related U.S. Appl. No. 14/517,521, mailed Dec. 12, 2017. |
Office Action for related U.S. Appl. No. 14/490,898, mailed Jan. 4, 2018. |
International Search Report and Written Opinion for related application PCT/US2017/058209, mailed Jan. 10, 2018. |
Office Action for related U.S. Appl. No. 14/965,675, mailed Jan. 31, 2018. |
International Search Report and Written Opinion for related application PCT/US2016/047351, mailed Nov. 2, 2016. |
Extended European Search Report for related application 17177013.4, mailed Mar. 19, 2018. |
Extended European Search Report for related application 16793298.7, mailed Mar. 27, 2018. |
Office Action for related U.S. Appl. No. 14/965,675, dated Aug. 9, 2018. |
Office Action for related U.S. Appl. No. 15/307,472, dated Oct. 18, 2018. |
Office Action for related U.S. Appl. No. 16/007,060, dated Aug. 18, 2020. |
Office Action for related U.S. Appl. No. 15/937,485, dated Aug. 4, 2020. |
Office Action for related U.S. Appl. No. 15/793,044, dated Sep. 24, 2020. |
Extended European Search Report for related application 20185730.7, dated Oct. 9, 2020. |
Advisory Action for related U.S. Appl. No. 15/793,044, dated Dec. 9, 2020. |
Japanese Office Action for related application 2019-235427, dated Jan. 5, 2021. |
Office Action for related U.S. Appl. No. 16/151,005, dated Apr. 13, 2021. |
Office Action for related U.S. Appl. No. 16/287,862, dated Nov. 2, 2021. |
Office Action for related U.S. Appl. No. 16/577,535, dated Mar. 15, 2022. |
Office Action for related U.S. Appl. No. 16/528,441, dated May 9, 2022. |
Extended European Search Report for related application 21209807.3, dated Jun. 1, 2022. |
Office Action for related U.S. Appl. No. 17/009,328, dated Oct. 14, 2022. |
Office Action for related U.S. Appl. No. 17/151,489, dated Feb. 23, 2023. |
Office Action for related U.S. Appl. No. 17/374,467, dated Apr. 5, 2023. |
Office Action for related U.S. Appl. No. 16/733,023, dated Feb. 9, 2023. |
Office Action for related U.S. Appl. No. 17/122,855, dated Feb. 7, 2023. |
Office Action for related U.S. Appl. No. 16/746,425, dated Aug. 17, 2023. |
Office Action for related U.S. Appl. No. 16/733,023, dated Sep. 7, 2023. |
Office Action for related U.S. Appl. No. 17/480,930, dated Oct. 3, 2023. |
Office Action for related U.S. Appl. No. 17/226,976, dated Dec. 21, 2023. |
European Examination Report for related application 21158749.8, dated Feb. 8, 2024. |
Office Action for related U.S. Appl. No. 18/375,313, dated Jun. 5, 2024. |
Chinese Office Action for related application 2020108367584, dated Aug. 2, 2024. |
Office Action for related U.S. Appl. No. 18/220,540, dated Oct. 31, 2024. |
Number | Date | Country | |
---|---|---|---|
20190336346 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62092991 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14965675 | Dec 2015 | US |
Child | 16513481 | US |