The present invention relates to a drift-tube linear accelerator that accelerates charged particles with an electric field which is generated between electrodes (drift tube) supported by stems arranged in the cylindrical cavity by supplying radio frequency electric power to a cylindrical vacuum cavity.
A drift-tube linear accelerator is configured such that one or more pairs of hollow cylindrical drift-tube electrodes are arranged along the beam traveling direction in the cylindrical cavity. Radio-frequency electric power is fed into the cylindrical cavity and a radio-frequency electric field generated between the drift-tube electrodes accelerates charged particles (for example, such as protons or carbon ions) in the beam traveling direction. The drift-tube electrodes are designed to be arranged so that the charged particles exist inside the drift-tube electrodes when the radio-frequency electric field points toward the direction inverse to the beam traveling direction.
There are two types of electromagnetic field modes generated in the cylindrical cavity: TM mode (an electric field is generated in the longitudinal direction of the cylindrical cavity) and TE mode (a magnetic field is generated in the longitudinal direction of the cylindrical cavity). A drift-tube linear accelerator using the TM mode includes an Alvarez drift-tube linear accelerator. In this Alvarez drift-tube linear accelerator, since the electromagnetic field mode in the cylindrical cavity is used intact for an accelerating and focusing electric field to be generated between the drift-tube electrodes, the drift-tube electrodes are supported suspendedly from the cylindrical cavity. On the other hand, a drift-tube linear accelerator using the TE mode includes an interdigital H-mode (IH) drift-tube linear accelerator and the like. In the IH drift-tube linear accelerator, since the electromagnetic field mode in the cylindrical cavity cannot be used intact for an accelerating and focusing electric field to be generated between the drift-tube electrodes, the drift-tube electrodes is supported by stems that are alternately arranged vertically (or horizontally) in the cylindrical cavity, to generate indirectly an accelerating and focusing electric field between the drift-tube electrodes by an induced current.
When radio-frequency power of a predetermined frequency is introduced into the cavity, a resonance occurs and an electric field is generated between the drift-tube electrodes. By the electric field generated between the drift-tube electrodes, particles are accelerated increasingly every time passing through the drift-tube electrode.
Since a particle beam is aggregation of charged particles, a repulsive force acts between each other of the particles (this refers to as “space charge effect”). For that reason, the particles spread in both radial and traveling directions as they travel in the traveling direction; in particular, the radial spread causes loss of the particles due to collision with the vacuum duct wall. Hence, there is needed a beam radially focusing device that suppresses radial spreading of the beam. Conventionally, the beam spreading has been suppressed using a focusing device built-in drift-tube electrode that incorporates a focusing device and a drift-tube electrode (Patent Document 1). However, the alternating phase focusing (APF) method is recently proposed, in which a beam focusing force is obtained by a design that couples generation of curved electric-field distribution between drift-tube electrodes and the timing for charged particles to travel therebetween (Patent Document 2).
An APF-IH linear accelerator, which is fabricated by applying the APF method to an IH linear accelerator, eliminates the need for using such a focusing device built-in drift-tube electrode, achieving low cost and simple structure; and hence has been used, for example, in a field such as of medical devices necessary for reliability.
In a medical synchrotron facility using a heavy particle beam such as of carbon ions (not include protons), an APF-IH linear accelerator is utilized as a subsequent stage accelerator to the injector. Carbon ions produced by an ion source are pre-accelerated through a former stage accelerator, and then focused by three successive quadrupole electromagnets so as to satisfy an injection condition (acceptance) of the APF-IH linear accelerator. After that, the injected tetravalent carbon beam of 400 eμA (=100 μA) is accelerated up to 4 MeV/u. By employing the APF-IH linear accelerator, compactness of about ⅙ in total length is achieved compared to a conventional drift-tube linear accelerator (Alvarez drift-tube linear accelerator) that uses a focusing device built-in drift-tube electrode (Non-Patent Document 1).
Since a particle beam is aggregation of charged particles, a repulsive force due to their individual charges acts between each other of the particles. This space charge effect poses a problem that spreading force in the radial direction becomes dominant relative to that in the beam traveling direction, in particular for cases with a large current particle beam of light weight charged particles like protons and further with a low energy particle beam. Although an APF-IH linear accelerator particularly demonstrated a track record of accelerating a small current (100 μA) carbon beam up to 4 MeV/u, it was not able to accelerate, because of its weak focusing force, a large current proton beam of over 10 mA up to 7 MeV/u that is required for the injector of a medical synchrotron facility utilizing a proton beam. For example, a three times larger focusing force is required for focusing a proton beam than for a tetravalent carbon beam and further required is a 100 times larger current from 100 μA to over 10 mA, that is, a more than 300 times larger focusing force is required compared to the carbon beam. Therefore, it is hard to apply an APF-IH linear accelerator to acceleration of a large current proton beam.
The present invention is made to resolve the above problem with a conventional accelerator, and aimed at obtaining a drift-tube linear accelerator capable of accelerating a particle beam of large current.
A drift-tube accelerator according to the present invention passes an injected particle beam through inside a plurality of cylindrical drift-tube electrodes arranged in a cylindrical cavity in a beam traveling direction of the particle beam and accelerates the particle beam by a radio-frequency electric field generated between the plurality of cylindrical drift-tube electrodes, wherein at least part of a focusing device for focusing the particle beam is disposed inside an end drift-tube electrode that is arranged nearest the injection side of the cylindrical cavity among the plurality of cylindrical drift-tube electrodes, with the focusing device being positionally adjustable independently of the end drift-tube electrode.
According to the present invention, a drift-tube linear accelerator can be provided that is capable of accelerating a particle beam of large current.
The hollow diameter (inner diameter) of the cylindrical cavity 1 increases toward the particle beam traveling direction 2. This is for preventing the intensity distribution of electric field generated between the drift-tube electrodes in the cylindrical cavity 1 from concentrating toward the injection side because a denser arrangement of the drift-tube electrodes toward the injection side is equivalent to concentration of electrostatic capacity toward the injection side in light of the cylindrical cavity 1 as a whole.
The intensity of electric field generated between the drift-tube electrodes follows Faraday's law expressed by the following Formula 1.
Formula 1
∫EDTdl=−{dot over (B)}dS (1)
Here, l represents a length between the drift-tube electrodes 3; EDT, the intensity of electric field generated between the drift-tube electrodes 3; B, the intensity of magnetic field generated in the APF-IH linear accelerator; “•”, a time derivative; and S, a cross section area enclosed by a RF current path (∝ the diameter the cylindrical cavity 1). According to the above formula, in order to intensify the electric field between the drift-tube electrodes 3, the cylindrical cavity 1 is made to have an increasing diameter. This diameter increase is illustrated in
A particle beam is injected into the cylindrical cavity 1 from a pre-accelerator 27 such as, for example, a RFQ linear accelerator through three successive quadrupole permanent magnets 14, that is, a focusing device. The cylindrical cavity 1 is provided with end plates 11 at its both ends (the extraction-side end plate is not shown in
In order to generate an accelerating and focusing electric-field distribution between the end drift-tube electrode 13 and the first drift-tube electrode 12, the end drift-tube electrode 13 is made up of a first portion 18 that is radially enlarged to dispose the focusing device thereinside and a second portion 19 that has the same outer diameter as the other drift-tube electrodes 3. The length of the second portion 19 is designed so as to cause substantially no effects on the intensity of electric field generated between the end drift-tube electrode 13 and the first drift-tube electrode 12. For example, when no second portion is provided at all, electric lines of force generated between the first drift-tube electrode 12 and the end drift-tube electrode 13 differ obviously from those generated between the other drift-tube electrodes. For that reason, taking the position of the stem that supports the first drift-tube electrode 12 where the particles have a lowest energy as a reference, the second portion should be provided to have a length longer than the distance from the end plane of the first drift-tube electrode 12 facing the end drift-tube electrode 13 to the stem supporting the first drift-tube electrode 12. When there is a drift-tube electrode that has a length shorter than the entire length of the first drift-tube electrode, the shorter length is employed as the reference for applying the APF method.
The quadrupole permanent magnet 14 has north poles and south poles arranged alternately every 90 degrees. Since a magnetic field distribution generated by this magnet arrangement has an effect of focusing or spreading the beam horizontally and vertically, a three-successive arrangement, for example, spreading-focusing-spreading in the horizontal direction is employed.
A high current proton beam of over 10 mA is injected as a particle beam into the APF-IH linear accelerator from the injection side. The injected particle beam is not always aligned with the center axis of the three successive quadrupole permanents magnets 14. When an injected particle beam that is out of axis with respect to the center of the quadrupole magnets passes therethrough, a deflecting action is produced on the beam itself, in addition to the focusing and spreading action in the radial direction. In particular, since a magnetic field gradient generated by a quadrupole magnet for focusing a large current proton beam is of 100 T/m level, the deflection amount cannot be neglected. Accordingly, a positional adjustment within about ±0.1 mm is needed for the beam axis to be aligned with the center of the quadrupole magnets.
Since the drift-tube linear accelerator accelerates the particle beam by the RF electric field between the drift-tube electrodes 3, no acceleration can be produced during the period when the generated RF electric field is inverse to the beam traveling direction. Hence, arrangement of the drift-tube electrodes 3 is designed so that the particle beam exists inside the drift-tube electrodes 3 during this period so as not to be affected by the RF electric field inverse to the beam traveling direction. Accordingly, even if a DC beam (temporally continuous beam) is injected into the drift-tube linear accelerator, not all of the particles in the beam can be accelerated. For that reason, in order to extract a required amount of current from the drift-tube linear accelerator, for example a RFQ linear accelerator is used as the pre-accelerator 27 that is capable of accelerating and bunching the particle beam in a low energy region. In this case, a DC beam or a particle beam that is spread in the traveling direction needs to be injected into the drift-tube linear accelerator after bunched using a buncher or the like that is capable of only bunching the particle beam. However, for example, when a RFQ linear accelerator is employed as the pre-accelerator 27 and a conventional quadrupole electromagnet is used for satisfying the radial acceptance of the APF-IH linear accelerator, the particle beam travels longer distance due to the large electromagnet size and spreads in the beam traveling direction owing to space charge effect.
As a result, even though the particle beam can be injected into the APF-IH linear accelerator, it cannot fall within the acceptance in the beam traveling direction; hence a particle beam of large current cannot be accelerated. In addition, since the end drift-tube electrode 13 needs to have a length necessary for the traveling-direction magnetic field generated in the IH linear accelerator to extend to both ends of the cylindrical cavity 1, it is impossible to shorten the length of the end drift-tube electrode 13 on account of the beam spread. For that reason, the quadrupole permanent magnets 14 that are capable of shortening the focusing device in the beam traveling direction are used, and part of the quadrupole permanent magnets 14 is disposed as the focusing device inside the end drift-tube electrode 13. The region L in
Disposing part of the quadrupole permanent magnets 14 inside the end drift-tube electrode 13 increases in the occupancy ratio of the end drift-tube electrode 13 in the cavity compared to that of the other drift-tube electrodes 3. Accordingly, in the structure of the cylindrical cavity 1 expanding from the injection side toward the extraction side, substantial RF magnetic field region generated in the injection side by the RF input is reduced, leading to decrease in the accelerating and focusing electric field. The decrease in accelerating and focusing electric field loses the ability of focusing a large current particle beam since space charge effect is remarkable in the low energy region. For that reason, the injection side of the cylindrical cavity 1 is enlarged more than the increasing cavity diameter toward the extraction side in order to even out the intensity of electric field. Namely, as shown in
The particle beam injected from the pre-accelerator or the like is not deflected but only focused by the gradient of strong magnetic field of the quadrupole permanent magnets 14, thereby to match with the radial injection condition of the APF-IH linear accelerator. Moreover, since the traveling distance between the pre-accelerator and the subsequent accelerator can be shortened, the particle beam also matches with the injection condition in the beam traveling direction. With regard to the accelerating and focusing electric field generated in the APF-IH linear accelerator, since the injection-side diameter of the cylindrical cavity 1 is enlarged, substantially the same electric field intensity as that generated between the other drift-tube electrodes can also be obtained between the end drift-tube electrode 13 and the first drift-tube electrode 12. Furthermore, since the shape of the portion of the end drift-tube electrode 13 opposite to the first drift-tube electrode 12 is the same as that of the first drift-tube electrode, an uneven electric field due to the disposition of the permanent magnets inside the end drift-tube electrode 13 can be suppressed. Still further, since the focusing device and the drift-tube electrode 13 are positionally adjusted independently of each other, the injection condition for the particle beam and the acceleration condition therefor can be independently satisfied, thereby accelerating a particle beam of large current.
Number | Date | Country | Kind |
---|---|---|---|
2010-157738 | Jul 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/063591 | 6/14/2011 | WO | 00 | 10/24/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/008255 | 1/19/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6744226 | Yu et al. | Jun 2004 | B2 |
7609009 | Tanaka et al. | Oct 2009 | B2 |
20100301782 | Yamamoto et al. | Dec 2010 | A1 |
20110216886 | Ho et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
5-283025 | Oct 1993 | JP |
11-329795 | Nov 1999 | JP |
2000-243599 | Sep 2000 | JP |
2008-166093 | Jul 2006 | JP |
2006-351233 | Dec 2006 | JP |
2007-165250 | Jun 2007 | JP |
2009-283389 | Dec 2009 | JP |
Entry |
---|
Office Action issued on Jan. 7, 2014, by the Japanese Patent Office in corresponding Japanese Patent Application No. 2012-524499, and an English Translation of the Office Action. (7 pages). |
International Search Report (PCT/ISA/210) issued on Sep. 6, 2011, by the Japanese Patent Office as the International Searching Authority for International Application No. PCT/JP2011/063591. |
Written Opinion (PCT/ISA/237) issued on Sep. 6, 2011, by the Japanese Patent Office as the International Searching Authority for International Application No. PCT/JP2011/063591. |
Y. Iwata et al., “Performance of a Compact Injector for Heavy-Ion Medical Accelerators”, Nuclear Instruments and Methods in Physics Research Section A, 572, Jan. 2, 2007, pp. 1007-1021. |
K. Yamamoto et al., “Experimental Verification of an APF Linac for a Proton Therapy Facility”, Nuclear Instruments and Methods in Physics Research B, 269, 2011, pp. 2875-2878. |
Number | Date | Country | |
---|---|---|---|
20130038248 A1 | Feb 2013 | US |