Certain related applications are listed in an application data sheet (ADS) filed with this application. The entirety of each of the applications listed in the ADS is hereby incorporated by reference herein.
The present invention relates to the field of motorized vehicles and, more specifically, to a kart type vehicle used for racing, and recreational entertainment.
Karting or kart racing is a popular open-wheeled motor sport with simple, small four wheeled vehicles called karts, go-karts, or gearbox/shifter karts depending on the design. Karts vary widely in speed and can reach speeds exceeding 160 miles per hour, while karts intended for the general public may be limited to speeds of no more than 15 miles per hour. 2-stroke or 4-stroke engines are typically used to power karts. However, a number of karts are powered by electric motors including DC electric motors.
Karts are typically rear wheel drive and are steered using the front wheels of the kart. Karts generally lack suspension so that the chassis of the Kart absorbs much of the vibration experienced during motion. The Kart chassis is designed to be flexible enough to work as a suspension and stiff enough not to break or give way during a turn. The chassis is commonly constructed from hollow tubes. For stability the driver of a kart is typically seated as low to the ground as possible. Lowering the height of the combined center of mass of the driver and kart reduces the likelihood that the kart will roll during a high speed maneuver.
Karts typically do not have a differential. The lack of a differential means that one rear tire must slide while cornering. Sliding can be achieved by designing the chassis so that the inside rear tire lifts up slightly when the kart turns the corner. This allows the tire to lose some of its grip and slide or lift off the ground completely.
Drifting refers to a driving technique and to a motor sport where the driver intentionally oversteers, causing loss of traction in the rear wheels through turns, while preserving vehicle control and a high exit speed. A vehicle is said to be drifting when the rear slip angle is greater than the front slip angle prior to the corner apex, and the front wheels are pointing in the opposite direction to the turn, and the driver is controlling those factors. Techniques for inducing drift include a hand brake drift. During a hand brake drift, the hand brake lever is used to stop the rear wheels, upsetting their grip and causing them to drift.
Drifting has become a competitive sport where drivers compete in rear wheel drive cars, and occasionally all wheel drive cars, to earn points from judges based on various factors including line, angle, speed and show factor. Line involves taking the correct line, which is usually announced beforehand by judges. The show factor is based on multiple things, such as the amount of smoke, how close the car is to the wall, and the crowd's reaction. Angle is the angle of a car in a drift, speed is the speed entering a turn, the speed through a turn, and the speed exiting the turn. Drift cars are typically light to moderate weight rear wheel drive coupes and sedans ranging from 200-1000 bhp. In almost all instances, drift cars include a mechanical limited slip differential.
Drifting karts in accordance with embodiments of the invention include a front wheel drive train and rear caster wheels that can be dynamically engaged to induce and control drift during a turn. One embodiment of the invention includes a chassis to which a steering column is mounted, where the steering column includes at least one front steerable wheel configured to be driven by an electric motor, a battery housing mounted to the chassis, where the battery housing contains a controller and at least one battery, wiring configured to provide power from the at least one battery to the electric motor, two caster wheels mounted to the chassis, where each caster wheel is configured to rotate around a rotational axis and swivel around a swivel axis, and a hand lever configured to dynamically engage the caster wheels to induce and control drift during a turn.
In a further embodiment, the two caster wheels are mounted to the chassis via a rotatable member that is connected to the hand lever, and rotation of the hand lever rotates the caster wheels from a first position where the caster wheels are aligned so that the weight on the caster wheels limits the ability of the caster wheels to swivel about their swivel axes, to a second position where the caster wheels are aligned so that they are free to swivel about their swivel axes.
In another embodiment, the steerable wheel is mounted to a zero camber zero rake fork.
In a still further embodiment, the steering column is configured to rotate through 360 degrees.
In still another embodiment, each caster wheel is configured to rotate 360 degrees around its rotational axis.
In a yet further embodiment, the electric motor is a variable speed electric motor, and the power delivered to the variable speed electric motor is controlled by an acceleration pedal.
Yet another embodiment also includes a seat mounted to the chassis and positioned in front of the battery housing.
In a further embodiment again, the seat is mounted to the chassis so that a steering wheel fixed to the steering column and the hand lever are within reach of a driver seated in the seat and so that the driver is seated low to the ground.
Another embodiment again also includes a pair of fixed wheels connected via an axle. In addition, the hand lever is configured to raise and lower the pair of fixed wheels and the casters are mounted to the chassis and the hand lever engages the caster wheels by raising the fixed wheels.
In a further additional embodiment again, the fork is a zero camber zero rake fork.
In another additional embodiment again, the steering column is configured to rotate through 360 degrees.
In a still yet further embodiment, each caster wheel is configured to rotate 360 degrees around its rotational axis.
In still yet another embodiment, the electric motor is a variable speed electric motor, and the power delivered to the variable speed electric motor is controlled by an acceleration pedal.
A still further embodiment again also includes a seat mounted to the chassis and positioned in front of the battery housing.
In still another embodiment again, the seat is mounted to the chassis so that a steering wheel fixed to the steering column and the hand lever are within reach of a driver seated in the seat and so that the driver is seated low to the ground.
Another further embodiment includes a hollow tube chassis to which a steering column is mounted, where the steering column includes at least one front steerable wheel mounted to a zero camber zero rake fork that is configured to rotate through 360 degrees and where the at least one steerable wheel is configured to be driven by a variable speed electric motor, a battery housing mounted to the chassis, where the battery housing contains a controller and at least one battery, wiring configured to provide power from the at least one battery to the variable speed electric motor, an acceleration pedal connected to a throttle that controls the power delivered by the at least one battery to the variable speed electric motor, two caster wheels mounted to the chassis via a rotatable member, where each caster wheel is configured to rotate 360 degrees around a rotational axis and swivel 360 degrees around a swivel axis, a hand lever connected to the rotatable member, where rotation of the hand lever dynamically engages the caster wheels to induce and control drift during a turn by rotating the caster wheels from a first position where the caster wheels are aligned so that the weight on the caster wheels limits the ability of the caster wheels to swivel about their swivel axes, to a second position where the caster wheels are aligned so that they are free to swivel about their swivel axes, and a seat mounted to the chassis and positioned in front of the battery housing so that a steering wheel fixed to the steering column and the hand lever are within reach of a driver seated in the seat and so that the driver is seated low to the ground.
Turning now to the drawings, drifting karts that are front wheel drive and include rear caster wheels that can be dynamically engaged to induce and control drift during a turn in accordance with embodiments of the invention are illustrated. A caster wheel typically includes a wheel configured to rotate around a rotational axis and a fork supporting the wheel, which enables the wheel to swivel around a swivel axis. When the caster wheels of the drifting kart contact a track surface and the caster wheels are free to swivel around their swivel axes, the caster wheels are considered “engaged” and the kart can be steered into a drift. The caster wheels can be “disengaged” to steer the kart normally by either limiting the extent to which the caster wheels can swivel or by shifting the caster wheels so that they do not contact the track surface.
In a number of embodiments, a hand lever controls the engagement of the caster wheels and can be used by a driver to induce and control drift during a turn. Pulling on the hand lever simulates a hand brake drifting technique used to initiate drift in a rear wheel drive automobile with a limited slip differential. In many embodiments, the caster wheels are mounted to a rotatable member and the hand lever rotates the rotatable member from a first position, where the caster wheels are aligned so that the weight of the drifting kart and/or the driver limits the ability of the caster wheels to swivel about their swivel axes, to a second position where the caster wheels are aligned so that they are free to swivel about their swivel axes during motion of the drifting kart.
In several embodiments, the drifting kart includes an additional pair of rear wheels fixed to an axle and the hand lever is configured to raise and lower the fixed wheels so that the caster wheels do not engage the track in the lowered position, and the caster wheels engage the track in the raised position.
In many embodiments, a zero camber zero rake fork houses the power train. The power train can be a variable speed electric motor that delivers power to a drive wheel using a chain and sprocket system or belt. In several embodiments, the zero camber zero rake fork enables the front drive wheel to rotate through 360 degrees. In a number of embodiments, the alignment of the fork that houses the power train is aligned at an angle to vertical that is sufficiently small such that the weight of the drifting kart and the driver does not prevent the full 360 degree steering of the drive wheel. In a number of embodiments, full 360 degree drift is not desired and the fork can be aligned at a greater angle to vertical.
Referring now to
In several embodiments, the fork is a zero camber zero rake fork that enables the steering wheel to turn through 360 degrees. The ability to turn the steering wheel through 360 degrees and the ability to induce drift during the rotation of the steering wheel can provide the drifting kart with a zero turn radius allowing a driver to induce and control drift that spins the drifting kart through 360 degrees. The vertical alignment of such a fork means that the chassis of the drifting kart is not raised as the fork is rotated through 360 degrees on a level surface. The extent to which the steering column can be aligned at an angle to vertical depends largely upon the weight of the drifting cart, the weight of the driver, and the amount of force the driver can exert on the steering wheel during its turning through 360 degrees. Accordingly, many embodiments utilize forks aligned in accordance with the requirements of a specific application.
Referring now to
Referring now to
The caster wheels used in the construction of drifting karts in accordance with embodiments of the invention are typically constructed from high performance casters that include polyurethane wheels mounted to the caster fork via at least one bearing press fitted to the wheel. In one embodiment, the wheels have a 68 mm radius and the bearings are BSB ABEC 7 bearings. Although other casters appropriate to the application can also be used.
Power is provided to the power train via a battery housing 30 that contains batteries and a controller. The batteries are typically rechargeable and employ a recharging system that is configured to draw power from a conventional single phase power outlet. In many embodiments, the batteries form a 24 V battery system utilizing two 12 V 7 Amp Hour batteries and the controller regulates the supply of electricity to the electrical systems of the drifting kart. In other embodiments, batteries and controls are utilized as necessary for a specific application. In many embodiments, the battery housing provides a switch for powering the vehicle on or off, as well as a charger port connection for recharging the batteries. The power generated by the batteries is channeled to the electric motor, which is typically a variable speed motor, via wires running through the hollow tube chassis of the drifting kart.
In a number of embodiments, an acceleration pedal (not shown, but typically provided as a foot pedal) connects to a twist throttle accelerator that controls the power delivered to a variable speed electric motor in the power train. The twist throttle accelerator can be located at the rear of the drifting kart adjacent the battery housing. The amount of battery power channeled to the electric motor can be proportionate to how far the acceleration pedal is depressed. The acceleration pedal can be implemented using a lever similar to a bicycle brake lever and a bicycle break cable. In other embodiments, the acceleration pedal is implemented using a pedal mechanism and cables, and/or a variety of techniques are used to control the power delivered to the steerable wheel by the drive train.
A seat 32 for the driver is also mounted to the chassis. The seat is typically positioned so that the driver is readily able to rotate the steering wheel and pull upward on the hand lever from a comfortable driving position. For stability, the seat is typically fixed to the chassis as low to the ground as possible. The higher the seat the greater the likelihood that shifting weight will cause the drifting kart to roll during cornering. In a number of embodiments, the seat 32 is located in front of the battery housing 30. In other embodiments, the battery housing is located in accordance with the requirements of the application.
Referring back to the caster wheels 26 in
Although use of the “whammy bar” mechanism described above is discussed with reference to drifting karts, similar mechanisms involving modifying the rake of one or more caster wheels to control the extent to which the caster wheel can swivel around its swivel axis can be utilized in a variety of other powered and non-powered vehicles and/or devices. When incorporated into a device, the “whammy bar” mechanism typically involves at least one caster wheel mounted to a rotatable member that can be rotated using a lever to control the rake of the caster wheel.
While the above description contains many specific embodiments of the invention, these should not be construed as limitations on the scope of the invention, but rather as an example of one embodiment thereof. For example, other mechanisms can be used to dynamically engage caster wheels and induce and control drift during a turn including but not limited to mechanisms that mechanically and controllably limit the ability of the caster wheels to swivel around their swivel axes. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
1231531 | Shilling | Jun 1917 | A |
1932031 | Saverio | Oct 1933 | A |
D134560 | Fletcher | Dec 1942 | S |
D171210 | Jones | Dec 1953 | S |
3062559 | Hewitt | Jun 1959 | A |
D189614 | Beale | Jan 1961 | S |
D190024 | Rouse | Apr 1961 | S |
3053550 | Joachim et al. | Sep 1962 | A |
3099326 | Weigel et al. | Jul 1963 | A |
3125177 | Paller | Mar 1964 | A |
3512599 | Hott et al. | May 1970 | A |
3533484 | Wood, Jr. | Oct 1970 | A |
D222283 | Reeves | Oct 1971 | S |
3700058 | Kuwahara | Oct 1972 | A |
3799283 | Freber | Mar 1974 | A |
3829117 | Park | Aug 1974 | A |
3938608 | Folco-Zambelli | Feb 1976 | A |
3960392 | Read | Jun 1976 | A |
D243627 | Clower | Mar 1977 | S |
D246198 | Rose | Oct 1977 | S |
4065144 | Winchell | Dec 1977 | A |
D249496 | Morgan | Sep 1978 | S |
D251264 | Cook et al. | Mar 1979 | S |
D252714 | Tidwell | Aug 1979 | S |
D256299 | Maccready | Aug 1980 | S |
4281844 | Jackman et al. | Aug 1981 | A |
4359231 | Mulcahy | Nov 1982 | A |
4403673 | Ball | Sep 1983 | A |
D276058 | Rogers | Oct 1984 | S |
D280916 | Castle | Oct 1985 | S |
4572535 | Stewart | Feb 1986 | A |
D290451 | Engum | Jun 1987 | S |
4682668 | Salmon et al. | Jul 1987 | A |
4750578 | Brandenfels | Jun 1988 | A |
4799708 | Handa et al. | Jan 1989 | A |
4826190 | Hartmann | May 1989 | A |
4886294 | Nahachewski | Dec 1989 | A |
4896899 | Lawrence | Jan 1990 | A |
4898508 | Hayata | Feb 1990 | A |
4915075 | Brown | Apr 1990 | A |
4944360 | Sturges | Jul 1990 | A |
4993733 | Eilers | Feb 1991 | A |
5036938 | Blount et al. | Aug 1991 | A |
D320420 | Dupont | Oct 1991 | S |
D320586 | Tellinghuisen | Oct 1991 | S |
D332765 | Tellinghuisen | Jan 1993 | S |
D332977 | Huffman et al. | Feb 1993 | S |
5199526 | Derviller | Apr 1993 | A |
5257671 | Watkins | Nov 1993 | A |
5265690 | Amundsen et al. | Nov 1993 | A |
5340139 | Davis | Aug 1994 | A |
D355879 | Winbald | Feb 1995 | S |
D356765 | DiMatteo | Mar 1995 | S |
5477936 | Sugioka et al. | Dec 1995 | A |
D366021 | Tharp | Jan 1996 | S |
5479998 | Ishikawa | Jan 1996 | A |
5494126 | Meeker | Feb 1996 | A |
D369130 | Cummings | Apr 1996 | S |
D378226 | Sundqvist | Feb 1997 | S |
5628379 | Watkins | May 1997 | A |
D390281 | O'Rourke | Feb 1998 | S |
D394164 | Safrit | May 1998 | S |
5816592 | Horton, II et al. | Oct 1998 | A |
5826670 | Nan | Oct 1998 | A |
D404928 | Safrit | Feb 1999 | S |
D408869 | Patmont | Apr 1999 | S |
D409538 | Isetani et al. | May 1999 | S |
5904218 | Watkins | May 1999 | A |
D410880 | Conterno | Jun 1999 | S |
D412138 | Triarsi et al. | Jul 1999 | S |
5931499 | Sutherland | Aug 1999 | A |
D419507 | Triarsi et al. | Jan 2000 | S |
6022049 | Wiggins, Jr. | Feb 2000 | A |
6026923 | Uphaus | Feb 2000 | A |
6047786 | Stevenson et al. | Apr 2000 | A |
D424996 | McShay, Jr. | May 2000 | S |
D433828 | Safrit | Nov 2000 | S |
D434086 | Ford | Nov 2000 | S |
6170596 | Triarsi et al. | Jan 2001 | B1 |
D439871 | Goebert et al. | Apr 2001 | S |
D440607 | Mahlow | Apr 2001 | S |
D445740 | Hartog | Jul 2001 | S |
6267190 | Micheletti | Jul 2001 | B1 |
6276480 | Aregger | Aug 2001 | B1 |
6349786 | Gift | Feb 2002 | B1 |
D460723 | Smit | Jul 2002 | S |
D465814 | Koveleski | Nov 2002 | S |
D466560 | Stolpmann | Dec 2002 | S |
D467088 | Haney et al. | Dec 2002 | S |
D469819 | Nicolle et al. | Feb 2003 | S |
D471936 | Tilbor et al. | Mar 2003 | S |
6530598 | Kirby | Mar 2003 | B1 |
D482882 | Murphy | Dec 2003 | S |
D483191 | Murphy | Dec 2003 | S |
D483420 | Delong et al. | Dec 2003 | S |
D485445 | De Maina | Jan 2004 | S |
D488194 | Fox et al. | Apr 2004 | S |
6729421 | Gluck | May 2004 | B1 |
6749039 | Uphaus | Jun 2004 | B1 |
D493391 | Gunter | Jul 2004 | S |
6766871 | Sawyer | Jul 2004 | B2 |
D498709 | Sramek | Nov 2004 | S |
D500707 | Lu | Jan 2005 | S |
D503658 | Lu | Apr 2005 | S |
D512467 | Hadley et al. | Dec 2005 | S |
D513483 | Buhrman | Jan 2006 | S |
7108090 | Turner | Sep 2006 | B2 |
7117967 | Kidd | Oct 2006 | B2 |
7198322 | Savo | Apr 2007 | B2 |
D557911 | Herold, III et al. | Dec 2007 | S |
D562914 | Oveson et al. | Feb 2008 | S |
D570572 | Whiteside et al. | Jun 2008 | S |
D574297 | Carl | Aug 2008 | S |
D575675 | Williams et al. | Aug 2008 | S |
D582489 | Bandanjo | Dec 2008 | S |
D582992 | Alais | Dec 2008 | S |
D587176 | Yang et al. | Feb 2009 | S |
7552934 | Lee et al. | Jun 2009 | B2 |
D601640 | McIlvain et al. | Oct 2009 | S |
D608250 | Van De | Jan 2010 | S |
D611106 | Van Beek | Mar 2010 | S |
7712558 | Helson et al. | May 2010 | B2 |
D619519 | Granata | Jul 2010 | S |
D619943 | Granata | Jul 2010 | S |
7779850 | Caldwell | Aug 2010 | B2 |
D622986 | Kubryk | Sep 2010 | S |
7823675 | Kermani | Nov 2010 | B2 |
D637116 | Kettler | May 2011 | S |
D637660 | Markowitz | May 2011 | S |
D644580 | Markowitz et al. | Sep 2011 | S |
D646086 | Hickman et al. | Oct 2011 | S |
8091658 | Peng | Jan 2012 | B2 |
8262117 | Knopf | Sep 2012 | B2 |
8356686 | Kermani | Jan 2013 | B2 |
8365850 | Gal et al. | Feb 2013 | B2 |
D682739 | Patterson et al. | May 2013 | S |
D682746 | Doherty et al. | May 2013 | S |
D690147 | Meyer | Sep 2013 | S |
D692505 | Jiang | Oct 2013 | S |
D692506 | Jiang | Oct 2013 | S |
8627910 | Carque | Jan 2014 | B1 |
D705128 | Patterson et al. | May 2014 | S |
8757644 | Satou | Jun 2014 | B2 |
8801005 | Flickner et al. | Aug 2014 | B1 |
8820460 | Chen | Sep 2014 | B2 |
8840131 | Calley | Sep 2014 | B1 |
8875831 | Kermani | Nov 2014 | B2 |
8931583 | Tuckowski | Jan 2015 | B2 |
D731222 | Bosman | Jun 2015 | S |
9102375 | Kermani | Aug 2015 | B2 |
D739318 | Rancan et al. | Sep 2015 | S |
9139248 | Xiao | Sep 2015 | B2 |
D761700 | Kermani | Jul 2016 | S |
D766780 | Fusco | Sep 2016 | S |
D771196 | Chen | Nov 2016 | S |
9499220 | Kermani | Nov 2016 | B2 |
D773359 | Okuyama et al. | Dec 2016 | S |
D774602 | Desberg | Dec 2016 | S |
D774981 | Chen | Dec 2016 | S |
D775282 | Williams et al. | Dec 2016 | S |
D776016 | Androski et al. | Jan 2017 | S |
D776204 | Van Den Berg | Jan 2017 | S |
9557740 | Crawley | Jan 2017 | B2 |
D778369 | Douma et al. | Feb 2017 | S |
D783726 | Williams et al. | Apr 2017 | S |
D787379 | Kermani | May 2017 | S |
D787610 | Desberg | May 2017 | S |
D789262 | Chen | Jun 2017 | S |
D792811 | Kermani et al. | Jul 2017 | S |
D793480 | Chen | Aug 2017 | S |
D793481 | Kermani et al. | Aug 2017 | S |
D793912 | Kermani | Aug 2017 | S |
D801242 | Kim | Oct 2017 | S |
D807438 | Desberg | Jan 2018 | S |
D809982 | Hosozawa | Feb 2018 | S |
D813314 | Montagne | Mar 2018 | S |
D816001 | Kim | Apr 2018 | S |
D820178 | Kim | Jun 2018 | S |
D820733 | Chen | Jun 2018 | S |
D827522 | Villamizar et al. | Sep 2018 | S |
D830469 | Kermani et al. | Oct 2018 | S |
D830470 | Chen | Oct 2018 | S |
10245194 | Kermani | Apr 2019 | B2 |
10266197 | Desberg | Apr 2019 | B2 |
D848166 | Braun | May 2019 | S |
D850328 | Allais | Jun 2019 | S |
D852892 | Chen | Jul 2019 | S |
D852893 | Kermani et al. | Jul 2019 | S |
D854457 | Kermani | Jul 2019 | S |
D854458 | Kermani | Jul 2019 | S |
D855339 | Ochs | Aug 2019 | S |
10434860 | Chen et al. | Oct 2019 | B2 |
D872657 | Li | Jan 2020 | S |
10543776 | Matsushima | Jan 2020 | B2 |
D874986 | Chen | Feb 2020 | S |
D890854 | Kermani et al. | Jul 2020 | S |
D890855 | Chen | Jul 2020 | S |
10822014 | Boittiaux et al. | Nov 2020 | B2 |
10843720 | Kwon et al. | Nov 2020 | B2 |
D913165 | Kermani | Mar 2021 | S |
D913878 | Kermani | Mar 2021 | S |
11110016 | Kermani | Sep 2021 | B2 |
D940794 | Chen | Jan 2022 | S |
D949749 | Chen | Apr 2022 | S |
D953938 | Kermani | Jun 2022 | S |
D953939 | Kermani | Jun 2022 | S |
D957534 | Kermani et al. | Jul 2022 | S |
20010014569 | Baker | Aug 2001 | A1 |
20020011374 | Brister | Jan 2002 | A1 |
20020175027 | Usherovich | Nov 2002 | A1 |
20030102657 | Kuo | Jun 2003 | A1 |
20040035627 | Richey et al. | Feb 2004 | A1 |
20040040769 | Richey et al. | Mar 2004 | A1 |
20040183274 | Schipper | Sep 2004 | A1 |
20040199311 | Aguilar et al. | Oct 2004 | A1 |
20050103554 | Meglioli | May 2005 | A1 |
20050173180 | Hypes et al. | Aug 2005 | A1 |
20070045022 | Greig et al. | Mar 2007 | A1 |
20070151777 | Peng | Jul 2007 | A1 |
20080122209 | Jayasuriya | May 2008 | A1 |
20080196951 | Gal et al. | Aug 2008 | A1 |
20090007721 | Cortina et al. | Jan 2009 | A1 |
20090065272 | Martin et al. | Mar 2009 | A1 |
20120133111 | Schmutzer et al. | May 2012 | A1 |
20130256048 | Chen et al. | Oct 2013 | A1 |
20150328994 | Chen et al. | May 2015 | A1 |
20160059896 | Gergaud | Mar 2016 | A1 |
20160214557 | Villa | Jul 2016 | A1 |
20170156953 | Kermani | Jun 2017 | A1 |
20180043950 | Kermani et al. | Feb 2018 | A1 |
20180273101 | Martin | Sep 2018 | A1 |
20200022856 | Kermani | Jan 2020 | A1 |
20200062100 | Chen et al. | Feb 2020 | A1 |
20220226175 | Kermani | Jul 2022 | A1 |
Number | Date | Country |
---|---|---|
2198169 | May 1995 | CN |
2269997 | Dec 1997 | CN |
1522916 | Aug 2004 | CN |
1569548 | Jan 2005 | CN |
2936826 | Aug 2007 | CN |
200974447 | Nov 2007 | CN |
200977859 | Nov 2007 | CN |
201009762 | Jan 2008 | CN |
203186508 | Sep 2013 | CN |
203427959 | Feb 2014 | CN |
203864416 | Oct 2014 | CN |
203864660 | Oct 2014 | CN |
204527453 | Aug 2015 | CN |
105083006 | Nov 2015 | CN |
205087107 | Mar 2016 | CN |
105947015 | Sep 2016 | CN |
206012763 | Mar 2017 | CN |
109843708 | Jun 2019 | CN |
102010052909 | Jun 2012 | DE |
0529188 | Mar 1993 | EP |
3496931 | Jan 2022 | EP |
859864 | Dec 1940 | FR |
1200504 | Jul 1970 | GB |
07-285345 | Oct 1995 | JP |
2000-127982 | May 2000 | JP |
2007-082817 | Apr 2007 | JP |
2007-153004 | Jun 2007 | JP |
2010-047206 | Mar 2010 | JP |
2016-0133191 | Nov 2016 | KR |
1174775 | Aug 1985 | SU |
WO 2018032730 | Feb 2018 | WO |
WO 2018035060 | Feb 2018 | WO |
Entry |
---|
Aamoth, Doug, “Razor Builds the Ultimate Drifting Go-Kart: Why Must I Always Be Over the Weight Limit for Everything Good in This World?” Jul. 11, 2013, retrieved on Aug. 6, 2016, http://techland.time.com/2013/07/11/razor-builds-the-ultimate-drifting-go-kart-why-must-i-always-be-over-the-weight-limit-for-everything-good-in-this-world/, in 2 pages. |
OTL Electrokart, “Storm Series—Competition” Datasheet, Jun. 14, 2014, retrieved on Aug. 6, 2016, https://www.kart1.com/pdf/competition.pdf, in 3 pages. |
International Preliminary Reporton Patentability in corresponding International Patent Application No. PCT/CN2017/072086, dated Feb. 19, 2019. |
International Preliminary Reporton Patentability in corresponding International Patent Application No. PCT/US2017/046815, dated Feb. 19, 2019. |
International Written Opinion of International Patent Application No. PCT/CN2017/072086, dated May 19, 2017. |
International Search Report and Written Opinion in corresponding International Patent Application No. PCT/US2017/046815, dated Nov. 7, 2017, in 8 pages. |
Razor USA: “Crazy Cart”, Jul. 21, 2016 (Jul. 21, 2016), Retrieved from the Internet: URL: https://www.razor.com/wp-content/uploads/2018/02/CrazyCartshift_MAN_US_160721-1.pdf [retrieved on Mar. 3, 2020]. |
Recreation Ltd. “Razor Crazy Cart Shift Ride Video”, YouTube, Aug. 15, 2016 (Aug. 15, 2016), Retrieved from the Internet: URL: https://youtube.com/watch?v=KjrfsfSiMZ4 [retrieved on Apr. 10, 2020]. |
Number | Date | Country | |
---|---|---|---|
20220362077 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
61082014 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17466580 | Sep 2021 | US |
Child | 17815118 | US | |
Parent | 16366557 | Mar 2019 | US |
Child | 17466580 | US | |
Parent | 16112469 | Aug 2018 | US |
Child | 16366557 | US | |
Parent | 15352343 | Nov 2016 | US |
Child | 16112469 | US | |
Parent | 14821491 | Aug 2015 | US |
Child | 15352343 | US | |
Parent | 14531840 | Nov 2014 | US |
Child | 14821491 | US | |
Parent | 13745648 | Jan 2013 | US |
Child | 14531840 | US | |
Parent | 12888672 | Sep 2010 | US |
Child | 13745648 | US | |
Parent | 12505955 | Jul 2009 | US |
Child | 12888672 | US |