The field of the present invention relates to methods and apparatus for drilling a hole in a ground formation. In particular, apparatus and methods for drilling a hole in an unconsolidated ground formation (earth, back fill, or other medium) and advancing a casing therethrough are described herein that employ a ring bit, a center bit, and a casing shoe.
A wide variety of apparatus and methods are available for drilling a hole in a ground formation. Some of these are described in:
U.S. Pat. No. 5,511,628 entitled “Pneumatic drill with central evacuation outlet” issued Apr. 30, 1996 to Ardis L. Holte;
U.S. Pat. No. 5,787,999 entitled “Drill bit with set of underreamer arms” issued Aug. 4, 1998 to Ardis L. Holte;
U.S. Pat. No. 5,803,192 entitled “Drill bit retainer for a down hole hammer assembly” issued Sep. 8, 1998 to Ardis L. Holte;
U.S. Pat. No. 5,957,226 entitled “Reverse circulation drilling system with hexagonal pipe coupling” issued Sep. 28, 1999 to Ardis L. Holte;
U.S. Pat. No. 5,975,222 entitled “Reverse circulation drilling system with bit locked underreamer arms” issued Nov. 2, 1999 to Ardis L. Holte;
U.S. Pat. No. 6,209,665 entitled “Reverse circulation drilling system with bit locked underreamer arms” issued Apr. 3, 2001 to Ardis L. Holte; and
U.S. Pat. No. 6,394,197 entitled “Reverse circulation drilling system with bit locked underreamer arms” issued May 28, 2002 to Ardis L. Holte.
Each of the above-named patents are hereby incorporated by reference as if fully set forth herein.
A drilling apparatus comprises a casing shoe, a ring bit, and a center bit. The casing shoe is adapted for being substantially rigidly connected to a leading end of an elongated casing in a substantially coaxial arrangement, with the leading end of the casing received within a trailing end of the casing shoe. The ring bit is mechanically retained at the leading end of the casing in a substantially coaxial arrangement with the trailing end of the ring bit received within a leading end of the casing shoe. The ring bit is rotatable relative to the casing shoe, and is adapted at its leading end for drilling a peripheral portion of a hole in a ground formation with a hole diameter sufficiently large to accommodate the casing shoe. The center bit is adapted at a leading end thereof for drilling a central portion of the hole in a ground formation, and adapted at a trailing end thereof for being rotated and percussively driven to drill the hole. The center bit and ring bit are adapted for engaging one another so that rotating and percussively driving the center bit also rotates and percussively drives the ring bit. The center bit and ring bit are adapted for engaging one another so that withdrawing the center bit from the hole also withdraws from the hole the ring bit, the casing shoe, and a casing connected to the casing shoe. The center bit and ring bit are adapted for enabling disengagement of the center bit from the ring bit and withdrawal of the center bit from the ring bit and the casing shoe. The apparatus may further comprise an elongated casing substantially rigidly connected to the casing shoe in a substantially coaxial arrangement, with the leading end of the casing received within a trailing end of the casing shoe. The casing, casing shoe, and ring bit comprise a casing assembly.
A method for drilling a hole in a ground formation comprises: i) substantially aligning at a desired hole position the casing assembly; ii) inserting a center bit through the casing and into the ring bit; iii) engaging the center bit and ring bit so that rotating and percussively driving the center bit also rotates and percussively drives the ring bit; and iv) rotating and percussively driving the center bit and the ring bit engaged therewith, thereby drilling the hole in the ground formation and driving the center bit and casing assembly into the hole. A method for drilling a hole may further comprise disengaging the center bit from the ring bit; and withdrawing the disengaged center bit from the hole and from the casing, while leaving the casing, the casing shoe, and the ring bit in the hole. Another method for drilling a hole may further comprise engaging the center bit with the ring bit so that withdrawing the center bit from the hole also withdraws the ring bit, casing shoe, and casing from the hole; and removing the center bit from the hole, thereby also removing from the hole the engaged ring bit, the casing shoe, and the casing. Another method for drilling a hole may further comprise interrupting percussive driving of the center bit before completion of the hole; during the interruption, engaging the center bit with the ring bit so that retracting the center bit within the hole also retracts the ring bit, casing shoe, and casing within the hole; during the interruption, retracting the center bit within the hole, thereby also retracting within the hole the engaged ring bit, the casing shoe, and the casing; and resuming percussive driving of the center bit.
Objects and advantages of pertaining to methods and apparatus for drilling holes in ground formations may become apparent upon referring to the disclosed embodiments as illustrated in the drawings and disclosed in the following written description and/or claims.
The embodiments shown in the Figures are exemplary, and should not be construed as limiting the scope of the present disclosure and/or appended claims. In particular, the length of the casing varies throughout the Figures, and in fact casings of widely varying lengths may be employed with the drill bit assembly as disclosed and/or claimed herein.
The ring bit 100 is shown alone in
The casing shoe is shown alone in
Center bit 200 is shown alone in
The center bit 200 may include a center channel 222, face channels 226, branch channels 224 each connecting the center channel to a corresponding face channel 226, and outer channels 228. The channels enable circulation of fluid into and out of the drilled hole through the channels for removing debris generated by drilling. The fluid may be injected into the casing 10 around the center bit 200 and escape through the center channel 222 (conventional circulation), or may be injected into the center channel 222 and escape from the casing 10 around the center bit 200 (reverse circulation). Any suitable fluid(s) may be employed for circulation and debris removal, including but not limited to: air, water, mud, concrete, or other suitable fluid medium. The particular arrangement of center bit 200 shown in the Figures (including channels 222/224/226/228, first end 202 and inserts 216, and second end 204) shown in the Figures is exemplary only, and should not be construed as limiting the scope of the present disclosure and/or appended claims; any other suitable arrangement or configuration shall also fall within the scope of the present disclosure and/or appended claims.
The center bit and ring bit are adapted for engaging one another so that rotating and percussively driving the center bit also rotates and percussively drives the ring bit. A drive shoulder 214 provided on the outer circumferential surface of center bit 200 makes contact with the trailing end 104 of the ring bit 100 when the center bit is inserted into the ring bit (
The outer circumferential surface of the center bit 200 (
The center bit 200 and ring bit 100 may be disengaged, and the center bit removed from the ring bit, casing shoe, and casing, by reversing the above procedure. This might be done, for example, upon completion of drilling with the center bit and ring bit if the casing 10 is to remain in the hole in the ground formation (at least temporarily). For example, upon reaching bedrock with the casing 10, the center bit 200 may be disengaged and removed from the casing, and another drill bit (appropriate for rock formations) may be inserted to drill into the bedrock (without advancing the casing). The casing 10 serves to support the hole while the additional drilling is done, and may be removed after such drilling is completed. The casing shoe being outside the casing and ring bit enables a wider range of other drill bits to be advanced through the casing and ring bit for such additional drilling. In another example, the center bit may be removed upon completion of drilling, and the casing 10 (along with ring bit 100 and casing shoe 300) may be left to support the hole while concrete and/or reinforcing members are inserted into the hole. The casing may be withdrawn as the hole fills with concrete. In other instances, it may be desirable for various reasons to leave the casing within the hole permanently, despite the loss of the ring bit and casing shoe that this would entail.
The phrase “flats” and “points” as used in the present disclosure and the appended claims shall be broadly construed. A simple circumferential set of flats and points might be a regular polygon, with the sides of the polygon being the flats and the vertices of the polygon being the points. Corresponding sets on the center bit and ring bit would engage one another when the sides and vertices line up and the center bit could be inserted into the ring bit. The engagement of the interlocking flats and points would substantially prevent relative rotation of the center bit and ring bit, so rotation of the center bit would result in rotation of the rig bit as well, in either rotation direction. Any rotational driving of the center bit also rotationally drives the ring bit when thus engaged. Modified versions of the simple polygonal flats and points are shown in the exemplary embodiment of the Figures, where the vertices of the polygon are rounded off and/or beveled off. The engagement of the center bit and ring bit is essentially unaltered. Any other interlocking configuration, such as a gear-like arrangement, may also fall within the scope of the present disclosure and/or appended claims.
The center bit 200 and ring bit 100 are adapted for engaging one another so that withdrawing the center bit 200 from the hole also withdraws from the hole the ring bit 100, the casing shoe 300, and the casing 10 connected to the casing shoe. The center bit 200 is inserted into the ring bit 100 so that the leading set 212a/212b of the center bit 200 is longitudinally substantially aligned with the slot 113 of the ring bit 100, while the trailing set 110a/110b of the ring bit 100 is longitudinally substantially aligned with the slot 213 of the center bit 200. In this alignment, the center bit and ring bit may rotate relative to one another, due to the clearance provided by the slots 113 and 213. The center bit is rotated so that the flats 212a are substantially aligned with the points 110b, and the points 212b are substantially aligned with flats 110a (
It is intended that equivalents of the disclosed exemplary embodiments and methods shall fall within the scope of the present disclosure and/or appended claims. It is intended that the disclosed exemplary embodiments and methods, and equivalents thereof, may be modified while remaining within the scope of the present disclosure and/or appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5511628 | Holte | Apr 1996 | A |
5787999 | Holte | Aug 1998 | A |
5803192 | Holte | Sep 1998 | A |
5921332 | Spedale, Jr. | Jul 1999 | A |
5957226 | Holte | Sep 1999 | A |
5975222 | Holte | Nov 1999 | A |
6035953 | Rear | Mar 2000 | A |
6209665 | Holte | Apr 2001 | B1 |
6394197 | Holte | May 2002 | B1 |
20040104050 | Jrvel et al. | Jun 2004 | A1 |
20060021801 | Hughes et al. | Feb 2006 | A1 |
20060081403 | Mattila | Apr 2006 | A1 |
Number | Date | Country |
---|---|---|
9-310576 | Dec 1997 | JP |
2001-336389 | May 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20060027399 A1 | Feb 2006 | US |