The present disclosure relates generally to downhole electrocrushing drilling and, more particularly, to drill bits used in downhole electrocrushing drilling.
Electrocrushing drilling uses pulsed power technology to drill a borehole in a rock formation. Pulsed power technology repeatedly applies a high electric potential across the electrodes of an electrocrushing drill bit, which ultimately causes the surrounding rock to fracture. The fractured rock is carried away from the bit by drilling fluid and the bit advances downhole.
For a more complete understanding of the present disclosure and its features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
Electrocrushing drilling may be used to form wellbores in subterranean rock formations for recovering hydrocarbons, such as oil and gas, from these formations. Electrocrushing drilling uses pulsed-power technology to repeatedly fracture the rock formation by repeatedly delivering high-energy electrical pulses to the rock formation. A drill bit used for electrocrushing drilling includes an electrode and a ground ring coupled to a power source. The electrode and ground ring have contours designed to enhance, concentrate, or otherwise manage the electric field surrounding the drill bit. The electrode and ground ring also have fluid flow ports and openings to facilitate the flow of electrocrushing drilling fluid into and out of the drilling field. During a drilling operation, the electric field surrounding the drill bit is such that an arc forms and spans the electrode and the ground ring and penetrates the rock formation. The electrocrushing drilling fluid insulates the components of the drill bit and removes rock cuttings from the drilling field. As such, an electrocrushing drill bit designed according to the present disclosure may provide for more efficient drilling and removal of cuttings during the drilling operation.
There are numerous ways in which electrocrushing drill bits may be implemented in a downhole electrocrushing pulsed-power system. Thus, embodiments of the present disclosure and its advantages are best understood by referring to
Drilling system 100 includes drilling platform 102 that supports derrick 104 having traveling block 106 for raising and lowering drill string 108. Drilling system 100 also includes pump 124, which circulates electrocrushing drilling fluid 122 through a feed pipe to drill string 110, which in turn conveys electrocrushing drilling fluid 122 downhole through interior channels of drill string 108 and through one or more orifices in electrocrushing drill bit 114. Electrocrushing drilling fluid 122 then circulates back to the surface via annulus 126 formed between drill string 108 and the sidewalls of wellbore 116. Fractured portions of the formation are carried to the surface by electrocrushing drilling fluid 122 to remove those fractured portions from wellbore 116.
Electrocrushing drill bit 114 is attached to the distal end of drill string 108. In some embodiments, power to electrocrushing drill bit 114 may be supplied from the surface. For example, generator 140 may generate electrical power and provide that power to power-conditioning unit 142. Power-conditioning unit 142 may then transmit electrical energy downhole via surface cable 143 and a sub-surface cable (not expressly shown in
The pulse-generating circuit within BHA 128 may be utilized to repeatedly apply a high electric potential, for example up to or exceeding 150 kV, across the electrodes of electrocrushing drill bit 114. Each application of electric potential may be referred to as a pulse. When the electric potential across the electrodes of electrocrushing drill bit 114 is increased enough during a pulse to generate a sufficiently high electric field, an electrical arc forms through a rock formation at the bottom of wellbore 116. The arc temporarily forms an electrical coupling between the electrodes of electrocrushing drill bit 114, allowing electric current to flow through the arc inside a portion of the rock formation at the bottom of wellbore 116. The arc greatly increases the temperature and pressure of the portion of the rock formation through which the arc flows and the surrounding formation and materials. The temperature and pressure are sufficiently high to break the rock itself into small bits or cuttings. This fractured rock is removed, typically by electrocrushing drilling fluid 122, which moves the fractured rock away from the electrodes and uphole.
As electrocrushing drill bit 114 repeatedly fractures the rock formation and electrocrushing drilling fluid 122 moves the fractured rock uphole, wellbore 116, which penetrates various subterranean rock formations 118, is created. Wellbore 116 may be any hole drilled into a subterranean formation or series of subterranean formations for the purpose of exploration or extraction of natural resources such as, for example, hydrocarbons, or for the purpose of injection of fluids such as, for example, water, wastewater, brine, or water mixed with other fluids. Additionally, wellbore 116 may be any hole drilled into a subterranean formation or series of subterranean formations for the purpose of geothermal power generation.
Although drilling system 100 is described herein as utilizing electrocrushing drill bit 114, drilling system 100 may also utilize an electrohydraulic drill bit. An electrohydraulic drill bit may have one or more electrodes and ground ring similar to electrocrushing drill bit 114. But, rather than generating an arc within the rock, an electrohydraulic drill bit applies a large electrical potential across the one or more electrodes and ground ring to form an arc across the drilling fluid proximate the bottom of wellbore 116. The high temperature of the arc vaporizes the portion of the fluid immediately surrounding the arc, which in turn generates a high-energy shock wave in the remaining fluid. The one or more electrodes of electrohydraulic drill bit may be oriented such that the shock wave generated by the arc is transmitted toward the bottom of wellbore 116. When the shock wave hits and bounces off of the rock at the bottom of wellbore 116, the rock fractures. Accordingly, drilling system 100 may utilize pulsed-power technology with an electrohydraulic drill bit to drill wellbore 116 in subterranean formation 118 in a similar manner as with electrocrushing drill bit 114.
Pulsed-power tool 230 may be coupled to provide pulsed electrical energy to electrocrushing drill bit 114. Pulsed-power tool 230 receives electrical power from a power source via cable 220. For example, pulsed-power tool 230 may receive electrical power via cable 220 from a power source on the surface as described above with reference to
Referring to
Electrocrushing drilling fluid 122 is typically circulated through drilling system 100 at a flow rate sufficient to remove fractured rock from the vicinity of electrocrushing drill bit 114. In addition, electrocrushing drilling fluid 122 may be under sufficient pressure at a location in wellbore 116, particularly a location near a hydrocarbon, gas, water, or other deposit, to prevent a blowout.
Electrocrushing drill bit 114 may include bit body 255, electrode 208, ground ring 250, and solid insulator 210. Electrode 208 may be placed approximately in the center of electrocrushing drill bit 114. The distance between electrode 208 and ground ring 250 may be a minimum of approximately 0.4 inches and a maximum of approximately 4 inches. The distance between electrode 208 and ground ring 250 may be based on the parameters of the electrocrushing drilling operation. For example, if the distance between electrode 208 and ground ring 250 is too small, electrocrushing drilling fluid 122 may break down and the arc between electrode 208 and ground ring 250 may not pass through the rock. However, if the distance between electrode 208 and ground ring 250 is too large, electrocrushing drilling bit 114 may not have adequate voltage to form an arc through the rock. For example, the distance between electrode 208 and ground ring 250 may be at least 0.4 inches, at least 1 inch, at least 1.5 inches, or at least 2 inches. The distance between electrode 208 and ground ring 250 may be based on the diameter of electrocrushing drill bit 114. The distance between electrode 208 and ground ring 250 may be generally symmetrical or may be asymmetrical such that the electric field surrounding the electrocrushing drill bit has a symmetrical or asymmetrical shape. The distance between electrode 208 and ground ring 250 allows electrocrushing drilling fluid 122 to flow between electrode 208 and ground ring 250 to remove vaporization bubbles from the drilling area. If drilling system 100 experiences vaporization bubbles in electrocrushing drilling fluid 122 near electrocrushing drill bit 114, the vaporization bubbles may have deleterious effects. For instance, vaporization bubbles near electrode 208 may impede formation of the arc in the rock. Electrocrushing drilling fluid 122 may be circulated at a flow rate also sufficient to remove vaporization bubbles from the vicinity of electrocrushing drill bit 114.
Electrode 208 has three sections: face 216, body 217, and stem 218. Face 216 is a distal portion of electrode 208 in contact with the rock during an electrocrushing drilling operation. For example, face 216 may engage with a portion of the wellbore, such as wellbore 116 shown in
The geometry of electrode 208 affects the electric field surrounding electrocrushing drill bit 114 during electrocrushing drilling. For example, the geometry of electrode 208 may be designed to result in an enhanced electric field surrounding electrode 208 so that the arcs initiate at electrode 208 and terminate on ground ring 250, or vice versa such that the arc initiates from ground ring 250 and terminate on electrode 208. The electric field surrounding electrode 208 may be designed so that most of the arcs initiating between electrode 208 and ground ring 250 do so through a path or multitude of paths that results in more efficient rock removal, for example a path or paths through the rock. Similarly, the electric field surrounding electrode 208 may be designed so as to minimize the arcs initiating between electrode 208 and ground ring 250 that do so through a path or multitude of paths that results in less efficient rock removal, for example path or paths short-cutting through the drilling fluid without penetrating the rock. For example, face 216 of electrode 208 may be engaged with a surface of the wellbore and a distal portion of ground ring 250 may also be engaged with the surface of the wellbore. The electric field may be designed such that the electric field is enhanced at a portion of electrode 208 proximate to face 216 and on a portion of ground ring 250 proximate to the distal portion of ground ring 250. An enhanced electric field in a region surrounding electrocrushing drill bit 114 may result in an increased electric flux in that region. For example, the electric field Es in the vicinity of a specifically shaped conducting structure will be larger than the average macroscopic electrical field created by the applied voltage over the average spacing Eapplied by the field enhancement factor, y, defined by the equation below:
Y=E
S
/E
applied
The geometry of electrode 208 includes the profile of face 216, the shape of body 217, and contours of transitions between face 216, body 217, and stem 218. For example, face 216 may have a flat profile, a concave profile, or a convex profile. The profile may be based on the design of the electric field surrounding the electrocrushing drill bit. Body 217 may be generally conical shaped, cylindrical shaped, rectangular shaped, polyhedral shaped, tear drop shaped, rod shaped, or any other suitable shape. The transitions between face 216 and body 217 may be contoured to result in electric field conditions that are either favorable or unfavorable for arc initiation or termination. For example, the transition between face 216 and body 217 may have a sharp radius of curvature such that the electric field conditions are favorable for an arc to initiate and/or terminate at the transition between face 216 and body 217. In contrast, the transition between body 217 and stem 218 may have a gentle radius of curvature such that the conditions are not favorable for arc initiation and/or termination at the transition between body 217 and stem 218. A radius of curvature of a transition is the radius of a circle of which the arc of the transition is a part. By way of example, a sharp radius of curvature may be a radius greater than 0.01 inches, and sometimes in the range of approximately 0.05 to approximately 0.15 inches, such as approximately 0.094 inches, and a gentle radius of curvature may be a radius in the range of approximately 0.15 to approximately 1.0 inches, such as approximately 0.25 inches, approximately 0.5 inches, approximately 0.75 inches, or approximately 1.0 inches. The ratio of the gentle radius of curvature to the sharp radius of curvature may be by approximately 2:1 or more, and may be up to 5:1, 10:1, or substantially greater than 10:1. The gentle radius may be determined based on the geometry of the surrounding structures on electrocrushing drill bit 114 and the shape of the electric field for a given electrocrushing drilling operation. For example, the electric fields on electrode 208 may be a function of the geometry of ground ring 250 and the geometry and material of insulator 210. For example, the radius of the edge of electrode 208 and the shape of electrode 208 may affect the interaction of electrocrushing drill bit 114 with the rock. Additionally, the structure of ground ring 250 may be adjusted to change the electric field distribution on electrode 208. Further, the material used to form insulator 210 and the configuration of insulator 210 may be adjusted to change the electric field on electrode 208. In some examples, the dielectric constant of the electrocrushing drilling fluid and the geometry of the rock fragments and the wellbore during the drilling process may affect the instantaneous electric field distribution on electrode 208. The transitions are shown in more detail in
The geometry of electrocrushing drill bit 114, and specifically certain dimensions between electrode 208 and ground ring 250, may be designed to maximize the occurrence of arc paths between the electrode and ground ring which travel through the rock, and/or to minimize short-cut paths for arcs to travel between the electrode and ground ring. Body 217, or body 217 in combination with stem 218, may be shaped to result in a first minimum distance between electrode 208 and ground ring 250, with a substantial portion of the electrode's conductive surface in the axial direction, perpendicular to face 216, being at a greater distance from ground ring 250. The first minimum distance may be a distance less than the average distance between electrode 208 and ground ring 250. The first minimum distance may result in a relative enhancement or concentration of the electric field at the perimeter of face 216 versus the balance of the axial extent of electrode 208, for example such that first minimum distance is at least approximately 15% less than the average distance between electrode 208 and ground ring 250, at least approximately 25% less than the average distance between electrode 208 and ground ring 250, or at least approximately 50% less than the average distance between electrode 208 and ground ring 250. A conical shaped ground ring as shown in
Ground ring 250 may function as an electrode and provide a location on the electrocrushing drill bit where an arc may initiate and/or terminate. Ground ring 250 also provides one or more fluid flow ports 260 such that electrocrushing drilling fluids flow through fluid flow ports 260 carry fractured rock and vaporization bubbles away from the drilling area. Further, ground ring 250 provides structural support for electrocrushing drill bit 114 to support the downforce caused by the weight of the electrocrushing drilling components uphole from electrocrushing drill bit 114, such as drill string 108 shown in
High electrical energy pulses from a power source may be applied to electrode 308 to generate an arc as described in more detail in
Electrode 308 may further include fluid flow opening 309 extending through stem 318 and body 317 to face 316 to direct electrocrushing drilling fluids from a drill string, such as drill string 108 shown in
Alternatively, fluid flow opening 309 may be used to accept a bolt to attach electrode 308 to the internal structure of the BHA (not expressly shown) to which electrode 308 is attached. Electrode 308 may further include slots 319 that facilitate the flow of electrocrushing drilling fluids around electrode 308. The presence of slots 319 may modify the direction and/or velocity of the flow of electrocrushing drilling fluid through the drilling area. Some slots 319 may be channels on face 316 of electrode 308, as shown by slot 319a in
Electrode 308 may be manufactured from any material that can withstand the conditions in a wellbore and has sufficient conductivity to conduct thousands of amps per pulse without structurally damaging the electrode, such as steel in the 41 family (often designated as the 41xx family, for example 4140 steel), carbon alloyed steel, stainless steel, nickel and nickel alloys, copper and copper alloys, titanium and titanium alloys, chromium and chromium alloys, molybdenum and molybdenum alloys, doped ceramics, composite materials using a matrix material having a high melting point, such as tungsten and a reinforcement material having a high conductivity and low melting point, such as copper, brass, silver, or gold, and combinations thereof. The conductivity of electrode 308 may be a function of the geometry of electrode 308 and the shape of the arc that forms between electrode 308 and the ground ring or other electrodes on the electrocrushing drilling bit. For example, the minimum conductivity of electrode 308 may be based on the voltage requirements of the electrocrushing drilling operation and such conductivities (measured at 20° C.) may be at least approximately 0.5×10∧6 1/ohm-meter, at least approximately 1.0×10∧7 1/ohm-meter, or higher. When an arc initiates or terminates at electrode 308, the temperature at the initiation or termination point increases such that the temperature melts the surface of electrode 308. Arc creation is often accompanied by a shock wave. When the shock wave impacts the melted surface of electrode 308, a portion of the melted surface may separate from the remainder of electrode 308 and be carried uphole with the electrocrushing drilling fluid. Therefore, to prevent material loss, the areas of electrode 308, for example edges 312 and/or 320, having electric field conditions favorable to arc initiation and/or termination may be coated with or made of a metal matrix composite. The metal matrix composite may be formed of a matrix material having a high melting point, and/or high resistance to electrical erosion, such as tungsten, carbide, ceramic, polycrystalline diamond compact, carbon fiber, graphene, graphite, olivene (FEPO4), carbon tubes or combinations thereof, infused with a metal having a low melting point, such as copper, gold, silver, indium, or combinations thereof. For example, the metal matrix composite may be a tungsten and copper composite such as ELKONITE®, manufactured and sold by CMW Inc. of Indianapolis, Indiana. The melting point of the matrix material may be higher than the melting point of the infused metal. During arc initiation and/or termination, the infused metal may melt while the matrix material remains solid to hold the melted infused metal in place during the shock wave motion. After the temperature decreases, the infused metal solidifies without any material loss.
Although
As described with respect to
Electrode 408 may further include one or more notches 422 along edge 412. The presence of notches 422 may change the electric field surrounding electrode 408 by increasing the electric field near electrode 408. Edge 412 of notches 422 may have a sharp radius of curvature to create conditions favorable for arc initiation and/or termination by providing a larger perimeter of electrode 408 having a sharp radius of curvature than the perimeter of a smooth edge (as shown in
Electrode 408 may be manufactured from materials similar to the materials described with respect to electrode 308 in
Although
As described with respect to
Similar to electrode 408 shown in
Electrode 508 may be manufactured from materials similar to the materials described with respect to electrode 308 in
Electrode 508 may additionally include one or more slots 519 that facilitate the flow of electrocrushing drilling fluid around electrode 508. Some slots 519 may be channels on face 516 of electrode 508, as shown by slot 519a in
Electrode 508 may further include a biasing device that urges electrode 508 away from the drill string and into contact with the rock through which the electrocrushing drill bit is drilling. For example, as shown in
Although
The shape of ground ring 650 may be selected to change the shape of the electric field surrounding the electrocrushing drill bit during electrocrushing drilling. For example, the electric field surrounding the electrocrushing drill bit may be designed so that the arc initiates at an electrode and terminates on ground ring 650 or vice versa such that the arc initiates from ground ring 650 and terminates on the electrode. The electric field changes based on the shape of the contours of the edges of ground ring 650. For example, downhole edge 662 may have a sharp radius of curvature such that the electric field conditions at downhole edge 662 are favorable for arc initiation and/or termination. Additionally, downhole edge 662 may be a distal portion of ground ring 650 that engages with a portion of the wellbore, such as wellbore 116 shown in
Ground ring 650 may include one or more fluid flow ports 660 on the outer perimeter of ground ring 650 to direct electrocrushing drilling fluid from around an electrode, out of the drilling field, and uphole to clear debris from the electrocrushing drilling field. The number and placement of fluid flow ports 660 may be determined based on the flow requirements of the electrocrushing drilling operation. For example, the number and/or size of fluid flow ports 660 may be increased to provide a faster fluid flow rate and/or larger fluid flow volume. Edge 668 of each fluid flow port 660 may have a gentle radius of curvature such that the electric field conditions at edge 668 of each fluid flow port 660 are not favorable for arc initiation and/or termination.
Ground ring 650 may be manufactured from any material that can withstand the conditions in the wellbore and support the downforce from the uphole drilling components, such as steel in the 41 family (often designated as the 41xx family, for example 4140 steel), carbon alloyed steel, stainless steel, nickel and nickel alloys, copper and copper alloys, titanium and titanium alloys, chromium and chromium alloys, molybdenum and molybdenum alloys, doped ceramics, and combinations thereof. As described with respect to electrode 308, when an arc initiates or terminates at ground ring 650, the temperature at the initiation or termination point increases such that the temperature melts the surface of ground ring 650. When the shock wave hits the melted surface of ground ring 650, a portion of the melted surface may separate from the remainder of ground ring 650 and be carried uphole with the electrocrushing drilling fluid. Therefore, to prevent material loss, the areas of ground ring 650 having electric field conditions favorable to arc initiation and/or termination may be coated with or made from a metal matrix composite, as described in
Ground ring 650 may further include threads 670 along the inner diameter of ground ring 650. Threads 670 may engage with corresponding threads on a portion of an electrocrushing drill bit such that ground ring 650 is replaceable during the electrocrushing drilling operation. Ground ring 650 may be replaced if ground ring 650 is damaged by erosion or fatigue during an electrocrushing drilling operation.
The thickness of wall 672 of ground ring 650 may be based on the diameter of ground ring 650 and/or the weight of the uphole components of the electrocrushing drilling system that are exerting downforce on ground ring 650. For example, the thickness of wall 672 may range from approximately 0.25 inches to approximately 2 inches. The thickness of wall 672 may be based on the diameter of ground ring 650 such that the thickness of wall 672 increases as the diameter of ground ring 650 increases. Additionally, the thickness of wall 672 may taper such that the thickness is the smallest at downhole edge 662 and the largest between curve 664 and curve 665. For example, the thickness of wall 672 may be approximately 0.3 inches at downhole edge 662 and increase to approximately 0.8 inches between curve 664 and curve 665. The tapering of the thickness of wall 672 may provide annular clearance for the flow of electrocrushing drilling fluid to clear debris from between the bottom hole assembly to which the electrocrushing drill bit is attached and the inner wall of the wellbore.
Diameter 674 of ground ring 650 may be based on the diameter of the wellbore and the annular clearance between the wellbore and the bottom hole assembly to which the electrocrushing drill bit is attached. The diameter of the electrode contained within ground ring 650 on the electrocrushing drill bit may be selected for drilling a particular type of formation. For example, the diameter of the electrode may be selected to optimize the electric field surrounding the electrocrushing drill bit and provide flow space for electrocrushing drilling fluid. Ground ring 650 may have an outer diameter equal to the gauge of the wellbore to be drilled by the electrocrushing drill bit or may have an outer diameter slightly smaller than the gauge of the wellbore to be drilled. For example, the outer diameter of ground ring 650 may be at least 0.03 inches or at least 0.5 inches smaller than the gauge of the wellbore to be drilled. In some examples, ground ring 650 may have features on the inner diameter of ground ring 650, such as curve 665, may have a gentle radius while features on the outer diameter of ground ring 650, such as curve 664, may have a sharp radius such that the electrocrushing drill bit creates an overgauged wellbore during a drilling operation.
During the electrocrushing drilling operation, the electrode and ground ring 650 may have opposite polarities to create electric field conditions such that arcs initiate at the electrode and terminate on the ground ring or vice versa such that the arcs initiate at ground ring 650 and terminate on the electrode. For example, the electrode may have a positive polarity while ground ring 650 has a negative polarity.
Electrocrushing drill bit 714 may additionally include solid insulator 710 and ground ring 750. Solid insulator 710 may be similar to solid insulator 210 shown in
The features of an electrocrushing drill bit described with respect to
Electrocrushing drill bit 814 may additionally include ground rings 850a and 850b. Ground ring 850b may be similar to ground ring 250 shown in
Electrocrushing drill bit 814 may be capable of electrically controlled directional drilling. A portion, for example approximately one-third, of electrodes 808 in
Electrocrushing drill bit 914 may additionally include outer ground ring 950a and transverse ground structure 950b. Ground ring 950 may be similar to ground ring 250 shown in
Electrocrushing drill bit 914 may be capable of electrically controlled directional drilling. One group of electrodes 908 within one segment formed by transverse ground structure 950b may fire at a higher repetition rate than the other groups of electrodes 908. Electrocrushing drill bit 914 may turn towards electrodes 908 firing at a slow repetition rate. In this manner, electrocrushing drill bit 914 may be used to electrically steer the drill during drilling operations by independently controlling the repetition rate of groups of electrodes 908.
Electrocrushing drill bit 1014 may additionally include transverse ground structure 1050b integral with or separate from outer ground ring 1050a. Outer ground ring 1050a may be similar to ground ring 250 shown in
Electrocrushing drill bit 1014 may be capable of electrically controlled directional drilling. One group of electrodes 1008 within one group of segments formed by transverse ground structure 1050b may fire at a higher repetition rate than the other groups of electrodes 1008. Electrocrushing drill bit 1014 may turn towards electrodes 1008 firing at a slow repetition rate. In this manner, electrocrushing drill bit 1014 may be used to electrically steer the drill during drilling operations by independently controlling the repetition rate of groups of electrodes 1008.
Electrocrushing drill bit 1114 may additionally include ground ring structure 1150 that may be flat and perpendicular to the direction of travel of electrocrushing drill bit 1114. Ground ring structure 1150 may also include curved portions, as shown in
Electrocrushing drill bit 1114 may be capable of electrically controlled directional drilling. One or more electrodes 1108 may fire at a higher repetition rate than the other electrodes 1108. Electrocrushing drill bit 1114 may turn towards electrodes 1108 firing at a slow repetition rate. In this manner, electrocrushing drill bit 1114 may be used to electrically steer the drill during drilling operations by independently controlling the repetition rate of groups of electrodes 1108.
Electrocrushing drill bit 1214 may additionally include ground ring 1250. Ground ring 1250 may be similar to ground ring 250 shown in
Electrocrushing drill bit 1214 may be capable of electrically controlled directional drilling. One or more electrodes 1208 in
At step 1320, electrocrushing drilling fluid may be provided to the downhole drilling field through a fluid flow opening in the center of the electrode, along with fluid flow over the top of the electrode. For example, as described above with reference to
At step 1330, electrical energy may be provided to an electrode and a ground ring of the drill bit. For example, as described above with reference to
At step 1340, an electrical arc may be formed between the first electrode and the second electrode of the drill bit. The pulse-generating circuit may be utilized to repeatedly apply a high electric potential, for example up to or exceeding approximately 150 kV, across the electrode. Each application of electric potential may be referred to as a pulse. When the electric potential across the electrode and ground ring is increased enough during a pulse to generate a sufficiently high electric field, an electrical arc forms through a rock formation at the bottom of the wellbore. The arc may initiate at a portion of the electrode having a sharp radius of curvature and terminate on a portion of the ground ring having a sharp radius of curvature, or vice versa such that the arc initiates on a portion of the ground ring having a sharp radius of curvature and terminate on a portion of the electrode having a sharp radius of curvature. The arc temporarily forms an electrical coupling between the electrode and the ground ring, allowing electric current to flow through the arc inside a portion of the rock formation at the bottom of the wellbore.
At step 1350, the rock formation at an end of the wellbore may be fractured by the electrical arc. For example, as described above with reference to
At step 1360, fractured rock may be removed from the end of the wellbore. For example, as described above with reference to
Modifications, additions, or omissions may be made to method 1300 without departing from the scope of the disclosure. For example, the order of the steps may be performed in a different manner than that described and some steps may be performed at the same time. Additionally, each individual step may include additional steps without departing from the scope of the present disclosure.
Embodiments herein may include:
A electrocrushing drill bit including a bit body; an electrode coupled to a power source and the bit body, the electrode having a distal portion for engaging with a surface of a wellbore; a ground ring coupled to the bit body proximate to the electrode and having a distal portion for engaging with the surface of the wellbore, the electrode and the ground ring positioned in relation to each other such that an electric field produced by a voltage applied between the ground ring and the electrode is enhanced at a portion of the electrode proximate to the distal portion of the electrode and at a portion of the ground ring proximate to the distal portion of the ground ring; and an insulator coupled to the bit body between the electrode and the ground ring.
A downhole drilling system including a drill string; a power source; and a drill bit coupled to the drill string and the power source. The drill bit includes a bit body; an electrode coupled to a power source and the bit body, the electrode having a distal portion for engaging with a surface of the wellbore; a ground ring coupled to the bit body proximate to the electrode and having a distal portion for engaging with the surface of the wellbore, the electrode and the ground ring positioned in relation to each other such that an electric field produced by a voltage applied between the ground ring and the electrode is enhanced at a portion of the electrode proximate to the distal portion of the electrode and at a portion of the ground ring proximate to the distal portion of the ground ring; and an insulator coupled to the bit body between the electrode and the ground ring.
A method including placing a drill bit downhole in a wellbore; supporting the weight of the drill bit and a drill string with a drill string support; providing electrical energy to the drill bit; providing electrocrushing drilling fluid to the drill bit; forming an electrical arc between the portion of the electrode proximate to the distal portion of the electrode and the portion of the ground ring proximate to the distal portion of the ground ring of the drill bit; fracturing a rock formation at an end of the wellbore with the electrical arc; and removing fractured rock from the end of the wellbore with the electrocrushing drilling fluid. The drill bit includes a bit body; an electrode coupled to a power source and the bit body, the electrode having a distal portion for engaging with a surface of a wellbore; a ground ring coupled to the bit body proximate to the electrode and having a distal portion for engaging with the surface of the wellbore, the electrode and the ground ring positioned in relation to each other such that an electric field produced by a voltage applied between the ground ring and the electrode is enhanced at a portion of the electrode proximate to the distal portion of the electrode and at a portion of the ground ring proximate to the distal portion of the ground ring; and an insulator coupled to the bit body between the electrode and the ground ring.
Each of embodiments A, B, and C may have one or more of the following additional elements in any combination: Element 1: wherein the electrode further includes a stem adjacent to the body and an opening extending through the stem and the body to the face of the electrode. Element 2: wherein the electrode further includes a slot in the face of the electrode. Element 3: wherein the slot is a channel in the face of the electrode. Element 4: wherein the slot extends through the body of the electrode. Element 5: wherein the edge of the face of the electrode includes a notch. Element 6: wherein the electrode further includes a stem adjacent to the body and a spring extending through a center of the stem to the body of the electrode. Element 7: wherein the electrode further includes a stem; and a transition between the body and the stem of the electrode has a gentle radius of curvature. Element 8: wherein the ground ring further includes a fluid flow port. Element 9: wherein an edge of the fluid flow port on the ground ring has a gentle radius of curvature. Element 10: wherein the electrode further includes a stem; and the electrocrushing drilling fluid is provided to the drill bit via a fluid flow opening extending through the stem to the face of the generally conical shaped electrode. Element 11: wherein a flow of the electrocrushing drilling fluid is modified by a slot in a face of the electrode. Element 12: wherein the electric arc initiates on the distal portion of the electrode and terminates on the distal portion of the ground ring. Element 13: wherein the electric arc initiates on the distal portion of the ground ring and terminates on the distal portion of the electrode. Element 14: further comprising maintaining contact between the face of the electrode and the rock formation by compressing a spring extending through a center of a stem adjacent to the body of the electrode. Element 15: wherein an edge of the electrode has a first sharp radius of curvature and the distal portion of the ground ring has a second sharp radius of curvature, the first sharp radius of curvature and the second sharp radius of curvature have a radius of between approximately 0.05 inches and approximately 0.15 inches. Element 16: further comprising a drill string support coupled to the bit body. Element 17: wherein the ground ring is the drill string support. Element 18: wherein the ground ring includes a projection extending from the ground ring. Element 19: wherein the ground ring includes an outer ground ring and a transverse ground structure. Element 20: wherein the ground ring includes multiple ground rings. Element 21: wherein the electrode includes a plurality of electrodes. Element 22: wherein the plurality of electrodes are arranged in a circular pattern on the bit body. Element 23: wherein the electrode has a shape selected from the group consisting of conical, cylindrical, rod, triangular, elliptical, wedge, taper, and airfoil. Element 24: wherein providing electrical energy to the drill bit includes providing electrical energy to a subset of the plurality of electrodes at a higher repetition rate than another subset of the plurality of electrodes. Element 25: wherein the electrode further includes a stem adjacent to the body and a piston positioned within a center of the stem to the body of the electrode.
Although the present disclosure has been described with several embodiments, various changes and modifications may be suggested to one skilled in the art. It is intended that the present disclosure encompasses such various changes and modifications as falling within the scope of the appended claims.
Number | Date | Country | |
---|---|---|---|
Parent | 17108765 | Dec 2020 | US |
Child | 17971878 | US | |
Parent | 16074595 | Aug 2018 | US |
Child | 17108765 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17971878 | Oct 2022 | US |
Child | 18340709 | US |