The present disclosure generally relates to a drill bit having a weight on bit (WOB) reducing effect.
SPE-10152-MS discloses, what used to be considered a novel drilling technique, the use of synthetic diamond cutters in a drag bit configuration, has now emerged in the drilling industry as a time and cost efficient drilling tool. These bits, utilizing polycrystalline diamond compact cutters for drilling polycrystalline diamond compact cutters for drilling soft or plastic formations have been proven successful through a systematic development. First, the main problem associated with drilling soft or plastic formations was identified as bit cleaning. Second, laboratory tests of a single compact cutting plastic shale under confining pressure with a load dynamometer and high speed photography were studied. The results demonstrated that a compact incorporating side rake angle and ample chip clearance space can provide efficient mechanical cleaning action. Finally, new style drill and core bits, built with side rake orientation along with previous style drill and core bits without side rake features, were field tested and observed in the same drill hole or in the same formation. The drill or core bits with side rake features always drilled or cored faster in the soft or plastic formations than those bits without side rake under the same operating parameters (hydraulic, bit weight and rpm). It was concluded that bits with side rake features can enhance the bit cleaning by mechanical cleaning action and, therefore, improve the bit performance in soft or plastic formations.
SPE-151406-MS discloses one of the key objectives within the drilling industry is optimizing rate of penetration (ROP) and a major contributor to obtaining this objective is the PDC bit design. Whilst previous papers have proven that the PDC cutting structure geometry, particularly back rake and side rake angles, affect PDC bit performance when tested at atmospheric conditions, no information in the SPE literature exists for similar tests at confining pressures. The effect of side rake angle on cutter aggresiveness and cutter interaction at depths of cut (DOC) in excess of 0.04 inch are particularly unknown under confined pressure. The results of more than 150 tests show that back rake and side rake angles have substantial effects on Mechanical Specific Energy (MSE) and the aggressiveness of PDC cutters. Experiments with three different rock types; Carthage marble, Mancos shale, and Torrey Buff sandstone, revealed that at both atmospheric and elevated confining pressures, PDC cutters with 10 deg back rake angles require half the energy to cut the same volume of rock and produce higher cutting efficiency compared with cutters having 40 deg back rake angles. Possible reasons for this behavior are explained through the analysis of the cutting process. Results show that a cutter with low back rake requires less horizontal cutting force in order to cut the same volume of rock. This observation indicates that not only will a PDC bit with lower back rake angles, drill more efficiently, but it will also require less torque in order to drill at the same ROP. Other factors such as reduced durability of cutters at low back rake angles should also be considered while applying these results to PDC bit designs. Test results at both atmospheric and confining pressures revealed that MSE decreases with increasing DOC up to 0.08 inch on all three rock types. However, the tests also showed that MSE starts to increase slightly at DOCs above 0.08 inch, possibly suggesting an optimal minimum DOC. Experimental results also show that, whilst Mancos shale and Carthage marble have about the same compressive strength, Mancos shale requires three times less energy to cut compared to Carthage marble. This indicates that, compressive strength of some rocks such as shales cannot be used alone as a reference rock property for accurately evaluating and comparing drilling efficiency. A new 3D mechanistic PDC cutter-rock interaction model was also developed which incorporates the effects of both back rake and side rake angles, along with rock specific coefficient of friction. The results from this single-cutter model are encouraging as they are consistent with the experimental data.
U.S. Pat. No. 5,649,604 discloses a rotary drill bit including a bit body having a shank for connection to a drill string, a plurality of cutters mounted on the bit body, each cutter having a cutting face, and means for supplying drilling fluid to the surface of the bit body to cool and clean the cutters. At least some of the cutters are lateral cutters located to act sideways on the formation being drilled, and the cutting faces of such lateral cutters are orientated to exhibit negative side rake and negative top rake with respect to the surface of the formation. The negative side rake angle is greater than 20° and may be as much as 90°, and the negative top rake angle is also more than 20°. A single cutter may include two cutting faces at different negative side rake angles, e.g. the cutter may comprise a generally cylindrical substrate formed at one end with two oppositely inclined surfaces meeting along a ridge, a facing table of polycrystalline diamond being bonded to the substrate surfaces and extending over the ridge.
U.S. Pat. No. 7,059,431 discloses a self-penetrating drilling method and a thrust-generating tool: the tool comprises N blades. Each blade comprised K drill cutters. The shapes, positions and orientations of said drill cutters are determined in the following manner: the kth drill cutter of the last blade drills, at the (q−1)th of the tool rotational cycle, a cut in the rock downstream of the one produced by the (k+1)th drill cutter of the first blade at the qth rotational cycle of the tool; the kth drill cutter of the nth blade drills, at the qth rotational cycle of the tool, a cut in the rock downstream of the one produced by the kth drill cutter of the (n+1)th blade at the qth rotational cycle of the tool; the normal to the leading edge of the drill cutter has a component along the axis of rotation oriented towards upstream.
U.S. Pat. No. 7,441,612 discloses a fixed cutter drill bit and a method for designing a fixed cutter drill bit including simulating the fixed cutter drill bit drilling in an earth formation. A performance characteristic of the simulated fixed cutter drill bit is determined. A side rake angle distribution of the cutters is adjusted at least along a cone region of a blade of the fixed cutter drill bit to change the performance characteristic of the fixed cutter drill bit.
U.S. Pat. No. 9,556,683 discloses earth boring tools with a plurality of fixed cutters having side rake or lateral rakes configured for improving chip removal and evacuation, drilling efficiency, and/or depth of cut management as compared with conventional arrangements.
US 2019/0017328 discloses a drill bit mounted on or integral to a mandrel on the distal end of a downhole motor directional assembly. The drill bit is in a fixed circumferential relationship with the activating mechanism of one or more dynamic lateral pads (DLP). The technologies of the present application assist in and optionally control the extent of lateral movement of the drill bit. The technologies include, among other things, the placement and angulation of the cutting structures in the cone areas of the blades on the drill bit.
The present disclosure generally relates to a drill bit having a weight on bit (WOB) reducing effect. In one embodiment, a bit for drilling a wellbore includes: a body; and a cutting face. The cutting face includes: an inner section and an outer section; a plurality of blades protruding from the body, each blade extending from a center of the cutting face and across the outer section; and a row of superhard cutters mounted along each blade, each cutter mounted in a pocket formed adjacent to a leading edge of the blade, the cutters in the inner section having a negative profile angle and the cutters in the outer section having a positive profile angle. At least one of: at least one inner cutter is oriented at a negative side rake angle to create a weight on bit (WOB) reducing effect relative to a hypothetical cutter oriented at a zero side rake angle, and at least one outer cutter is oriented at a positive side rake angle to create the WOB reducing effect. Each of the rest of the cutters are oriented at a side rake angle such that an overall effect of the side rake angles is the WOB reducing effect for the bit.
In another embodiment, a bit for drilling a wellbore includes: a body; and a cutting face. The cutting face includes: an inner section and an outer section; a plurality of blades protruding from the body, each blade extending from a center of the cutting face and across the outer section; and a row of superhard cutters mounted along each blade, each cutter mounted in a pocket formed adjacent to a leading edge of the blade and having a positive profile angle. At least one of the cutters is oriented at a positive side rake angle to create weight on bit (WOB) reducing effect relative to a hypothetical cutter oriented at a zero side rake angle. Each of the rest of the cutters are oriented at a side rake angle such that an overall effect of the side rake angles is the WOB reducing effect for the bit.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.
Alternatively, the bit body 2 may be metallic, such as being made from steel, and may be hardfaced. The metallic bit body may be connected to a modified shank by threaded couplings and then secured by a weld or the metallic bit body may be monoblock having an integral body and shank.
The cutting face may include one or more (three shown) primary blades 4p, one or more (three shown) secondary blades 4s, fluid courses 17 formed between the blades, a row of leading cutters 5a-g mounted along each blade, and backup cutters 6 mounted to each blade. The cutting face may have one or more sections, such as an inner cone 7c, an outer shoulder 7s, and an intermediate nose 7n between the cone and the shoulder sections. The blades 4p,s may be disposed around the cutting face and each blade may be formed during molding of the bit body 2 and may protrude from a bottom of the bit body. The primary blades 4p and the secondary blades 4s may be arranged about the cutting face in an alternating fashion. The primary blades 4p may each extend from a center 8c of the cutting face, across a portion of the cone section 7c, across the nose 7n and shoulder 7s sections, and to the gage section 3. The secondary blades 4s may each extend from a periphery of the cone section 7c, across the nose 7n and shoulder 7s sections, and to the gage section 3. Each blade 4p,s may extend generally radially across the portion of the cone section 7c (primary only) and nose section 7n with a slight spiral curvature and across the shoulder section 7s radially and longitudinally with a slight helical curvature. Each primary blade 4p may be inclined in the cone section 7c by a cone angle 11 (
Each blade 4p,s may be made from the same material as the lower portion of the bit body 2. The leading cutters 5a-g may be mounted along leading edges of the blades 4p,s after infiltration of the bit body 2. The leading cutters 5a-g may be pre-formed, such as by high pressure and temperature sintering, and mounted, such as by brazing, in respective leading pockets formed in the blades 4p,s adjacent to the leading edges thereof. Each blade 4p,s may have a lower face 4f extending between a leading edge and a trailing edge thereof.
Starting in the nose section 7n or shoulder section 7s, each blade 4p,s may have a row of backup pockets formed in the lower face 4f thereof and extending therealong. Each backup pocket may be aligned with or slightly offset from a respective leading pocket. The backup cutters 6 may be mounted, such as by brazing, in the backup pockets formed in the lower faces 4f of the blades 4p,s. The backup cutters 6 may be pre-formed, such as by high pressure and temperature sintering. The backup cutters 6 may extend along at least the shoulder section 7s of each blade 4p,s.
Alternatively, the drill bit 1a may further include shock studs protruding from the lower face 4f of each primary blade 4p in the cone section 7c and each shock stud may be aligned with or slightly offset from a respective leading cutter 5a-g.
One or more (six shown) ports 9p may be formed in the bit body 2 and each port may extend from the plenum and through the bottom of the bit body to discharge drilling fluid (not shown) along the fluid courses 17. A nozzle 9n may be disposed in each port 9p and fastened to the bit body 2. Each nozzle 9n may be fastened to the bit body 2 by having a threaded coupling formed in an outer surface thereof and each port 9p may be a threaded socket for engagement with the respective threaded coupling. The ports 9p may include an inner set of one or more (three shown) ports disposed in the cone section 7c and an outer set of one or more (three shown) ports disposed in the nose section 7n and/or shoulder section 7s. Each inner port 9p may be disposed between an inner end of a respective secondary blade 4s and the center 8c of the cutting face.
The gage section 3 may define a gage diameter of the drill bit 1a. The gage section 3 may include a plurality of gage pads (not shown), such as one gage pad for each blade 4p,s, a plurality of gage trimmers 3a,b, (3b shown in
Each gage pad may have a rectangular lower portion and a tapered upper portion. The tapered upper portions may transition an outer diameter of the drill bit 1a from the gage diameter to a lesser diameter of the shank. A taper angle may be the same for each upper portion and may range between thirty and sixty degrees as measured from a transverse axis of the drill bit 1a. Each gage trimmer 3a,b may be mounted to a leading edge of each lower portion. The gage trimmers 3a,b may be mounted, such as by brazing, in respective pockets formed in the lower portions adjacent to the leading edges thereof. The rectangular lower portions may have flat outer surfaces (except for the pockets therein). The gage trimmers 3a,b may have flats formed in outer surfaces thereof so as not to extend past the gage diameter of the drill bit 1a.
Alternatively, the gage pads may have gage protectors embedded therein.
Each cutter 5a-g, 6 and gage trimmer 3a,b may be a shear cutter and include a superhard cutting table, such as polycrystalline diamond (PCD), attached to a hard substrate, such as a cermet, thereby forming a compact, such as a polycrystalline diamond compact (PDC). The cermet may be a carbide cemented by a Group VIIIB metal, such as cobalt. The substrate and the cutting table may each be solid and cylindrical and a diameter of the substrate may be equal to a diameter of the cutting table. A working face of each cutter 5a-g, 6 and gage trimmer 3a,b may be opposite to the substrate and may be smooth and planar. Each gage protector may be made from thermally stable PCD or PDC.
One 5b of the leading cutters 5a-g of each primary blade 4p may be oriented at a negative side rake angle 8n. One 5f of the leading cutters 5a-g of each primary blade 4p may be oriented at a positive side rake angle 8p. The side rake angle 8n,p may be defined by an inclination of a through axis 8x of each cutter 5a-g, 6 relative to a respective line 8t tangent to a respective radial line 8r extending from the center 8c of the cutting face to a respective center of a working face 8w of the respective cutter about a respective inclination axis (not shown) normal to a respective projection (not shown) of the lower face 3f of the respective blade 3p,s at the center of the working face. In the view of
The rest of the cutters 5a, 5c-e, 5g, 6 and gage trimmers 3a,b of the drill bit 1a may be oriented at a zero side rake angle. The one cutter 5b of each primary blade 4p having the negative side rake angle 8n may also have a negative profile angle 10n and the one cutter 5f of each primary blade having the positive side rake angle 8p may have a positive profile angle. An absolute value of the side rake angle 8n,p of the cutters 5b,f may range between five and thirty degrees.
Alternatively, most or all of the leading cutters 5a-g of each primary blade 4p having a negative profile angle 10n may have a negative side rake angle and most or all of the leading cutters 5a-g and gage trimmers 3a,b of each primary blade having a positive profile angle 10p may have a positive side rake angle. An absolute value of the side rake angles 8n,p of the cutters may range between five and thirty degrees. Generally, as discussed below, the leading cutters 5a-g and gage trimmers 3a,b of each primary blade 4p may be side raked according to a profile angle scheme where cutters having a negative profile angle 10n are oriented with a negative side rake angle 8n and cutters and trimmers having a positive profile angle 10p are oriented with a positive side rake angle. Most or all of the leading cutters and trimmers of the secondary blades 4s may also be side raked according to the profile angle scheme. The backup cutters 6 may also be side raked according to the profile angle scheme. Alternatively, the leading cutter 5f of each primary blade 4p may have a zero side rake angle. Alternatively, the leading cutter 5b of each primary blade 4p may have a zero side rake angle.
In use (not shown), the drill bit 1a may be assembled with one or more drill collars, such as by threaded couplings, thereby forming a bottomhole assembly (BHA). The BHA may be connected to a bottom of a pipe string, such as drill pipe or coiled tubing, thereby forming a drill string. The BHA may further include a steering tool, such as a bent sub or rotary steering tool, for drilling a deviated portion of the wellbore. The pipe string may be used to deploy the BHA into the wellbore. The drill bit 1a may be rotated, such as by rotation of the drill string from a rig (not shown) and/or by a drilling motor (not shown) of the BHA, while drilling fluid, such as mud, may be pumped down the drill string. A portion of the weight of the drill string may be set on the drill bit 1a. The drilling fluid may be discharged by the nozzles 9n and carry cuttings up an annulus formed between the drill string and the wellbore and/or between the drill string and a casing string and/or liner string.
For the leading cutter 5d, a cutting force FC0 is generated (perpendicular to the page) and a normal force FN is generated. A projection of the normal force along the longitudinal axis is shown as FNZ. The projected force FNZ opposes forward movement of the drill bit 1a. If the drill bit 1a had all zero side raked cutters, the WOB would be determined by summing (and inverting) the projected force FNZ for each cutter 5a-g, 6.
As has been demonstrated by SPE-151406-MS (discussed above), for cutters having an absolute value side rake angle less than about thirty degrees: the side rake angle has a negligible influence on the specific energy associated to the drilling process and the side rake has a negligible influence on the ratio between the normal force FN and the cutting force FC, FC0. Consequently, and within this limit of side rake angle, neither the cutting force FC, FC0 nor the normal force component FN will be impacted physically and explicitly by the side rake, except for changes in cutting sections. To illustrate, when applying the side rake angles 8n,p, it can be fairly assumed that: the normal force FN will remain more or less the same in comparison to its value at zero side rake (small decrease due to the decrease in cutting section). The cutting force FC, FC0 will remain more or less the same but the direction will change, such that the cutting force will have two components: FC=FC0*cos(8n,p); and FL=FC0*sin(8n,p). The component FC has the same tangential direction as the cutting force FC0 and the new lateral component FL has a direction along a surface of the blade 4p.
Assuming that an absolute value of the side rake angles 8n,p equals twenty degrees, then: the cutting section decreases only by a factor of (1−cos(20)=0.07); according to the literature, FC only decreases by this same factor (no decrease due to a loss in specific energy); according to the literature, FN only decreases by this same factor (no decrease due to a loss in specific energy); and the new lateral force FL has an amplitude of sin(20)=0.34*FC0. Thus, at a very limited expense in terms of cutting efficiency, a significant lateral force FL can be generated by adjustment of the side rake angle 8n,p. The polarity of the side rake angle 8n,p and the polarity of the profile angle 10n,p will dictate whether the lateral force FL acts as a resisting force (increasing the WOB) or as a driving force (reducing the WOB).
For each of the side raked cutters 5b,f, the projection FLZ of lateral force FL onto the longitudinal axis Z, opposes the projection FNZ of the normal force FN along the longitudinal axis Z. For the side raked cutters 5b in the cone section 7c, the projection FLZ is equal to FL*sin(cone angle 11). In other words, for each of the side raked cutters 5b,f, a driving force FLZ which goes in the same direction as the movement of the drill bit 1a is generated while drilling the rock. This driving force FLZ reduces the WOB, or in other words, has a reducing WOB effect. Thus, any cutter 5a-g, 6 having a negative profile angle 10n and a negative side rake angle 8n has a reducing WOB effect and any cutter and gage trimmer 3a,b having a positive profile angle 10p and a positive side rake angle 8p has a reducing WOB effect.
The overall reduced WOB effect is clearly evident for the second 1b and third 1c drill bits. The overall reduced WOB effect is particularly significant (about a thirty percent reduction in WOB relative to the Reference drill bit) for the second drill bit 1b having the greater cone angle 11 (twenty degrees) and the greater side rake angles 8n,p (absolute value equaling twenty degrees). The reduced WOB effect may also be enhanced by a steep shoulder section 7s. Interestingly, changes in the side rake angles 8n,p do not affect the torque on bit (TOB) significantly. Thus, the WOB reducing effect is obtained at virtually no expense in terms of cutting efficiency.
The fourth drill bit 1d has one inner leading cutter 5n oriented with a negative side rake angle 8n and the rest of the cutters 5n,o,z have zero side rake angles. The WOB reducing effect is illustrated by comparing the longitudinal force FZ for the one side raked cutter 5n with the longitudinal force FZ of the hypothetical cutter 5x (illustrated in phantom).
The cutting face may include one or more, such as two (one shown and two may be inferred from cutter positions) primary blades 14, one or more, such as four (may be inferred from cutter positions) secondary blades, fluid courses formed between the blades, and the row of leading cutters 5a-g mounted along each blade. The cutting face may have one or more sections, such as an inner ridge 13r and an outer shoulder 13s. The blades 14 may be disposed around the cutting face and each blade may be formed during molding of the bit body and may protrude from a bottom of the bit body. The primary blades 14 may oppose each other and the secondary blades may be arranged about the cutting face between the primary blades. The primary blades 14 may each extend from a center of the cutting face, across a portion of the ridge section 13r, across the shoulder section 7s, and to the gage section 3. The secondary blades may each extend from a periphery of the ridge section 13r, across the shoulder section 7s, and to the gage section 3. Each blade 14 may extend generally radially across the portion of the ridge section 13r (primary only) with a slight spiral curvature and across the shoulder section 13s radially and longitudinally with a slight helical curvature. Each primary blade 14 may be declined in the ridge section 13r by a ridge angle 15. The ridge angle 15 may range between five and forty-five degrees, such as ten degrees.
Each blade 14 may be made from the same material as the lower portion of the bit body. The leading cutters 5a-g may be mounted along leading edges of the blades 14 after infiltration of the bit body. The leading cutters 5a-g may be pre-formed, such as by high pressure and temperature sintering, and mounted, such as by brazing, in respective leading pockets formed in the blades 14 adjacent to the leading edges thereof. Each blade 14 may have a lower face extending between a leading edge and a trailing edge thereof.
Alternatively, starting in the shoulder section 13s, each blade 14 may have a row of backup pockets formed in the lower face 4f thereof and extending therealong. Each backup pocket may be aligned with or slightly offset from a respective leading pocket. Backup cutters may be mounted, such as by brazing, in the backup pockets formed in the lower faces of the blades. The backup cutters may be pre-formed, such as by high pressure and temperature sintering. The backup cutters may extend along at least the shoulder section 13s of each blade 14. Alternatively, the bullet shaped drill bit 12 may further include shock studs protruding from the lower face of each primary blade 14 in the ridge section 13r and each shock stud may be aligned with or slightly offset from a respective leading cutter 5a-g.
One or more, such as four, ports (not shown) may be formed in the bit body and each port may extend from the plenum and through the bottom of the bit body to discharge drilling fluid (not shown) along the fluid courses. A nozzle may be disposed in each port and fastened to the bit body. Each nozzle may be fastened to the bit body by having a threaded coupling formed in an outer surface thereof and each port may be a threaded socket for engagement with the respective threaded coupling. The ports may include an inner set of one or more ports disposed in the ridge section 13r and an outer set of one or more ports disposed at the periphery of the ridge section 13r or shoulder section 13s. Each inner port may be disposed between an inner end of a respective secondary blade and the center of the cutting face.
All of the cutters 5a-g in the ridge 13r and shoulder 13s sections and the gage trimmers 3a,b have a positive profile angle 10p due to the ridge angle 15. Accordingly, all of the leading cutters 5a-g and gage trimmers 3a,b of each primary blade 14 and each secondary blade may be oriented at the positive side rake angle 8p, such as twenty degrees, to achieve the WOB reducing effect, as discussed above for the leading cutter 5f.
Alternatively, some of the leading cutters 5a-g and gage trimmers 3a,b of each primary blade 14 and/or secondary blade may have a zero side rake angle such that most of the leading cutters and gage trimmers still have the positive side rake angle 8p.
The second bullet shaped drill bit 16 has one inner leading cutter 5 oriented with a positive side rake angle 8p and the rest of the cutters have zero side rake angles. The WOB reducing effect is illustrated by comparing the longitudinal force FZ for the one side raked cutter 5 with the longitudinal force FZ of the hypothetical cutter 5x (illustrated in phantom).
Advantageously, reducing the WOB required to drill a given wellbore reduces the risk of dysfunction of the drill string, such as buckling and/or vibration, while drilling. The WOB reducing effect may be especially beneficial for directional drilling where transmission of weight to the drill bit becomes challenging and serves as a limitation factor of drill bit performance. Further, the reduced WOB may lead to an increase in cutting efficiency due to reduced friction between the drill bit and the formation.
Alternatively, the absolute value of the side rake angles may be increased to a value greater than thirty degrees, such as ranging between thirty-one and forty-five degrees. This expanded range would be accompanied by a penalty in cutting efficiency. However, the increased WOB reducing effect may be worth the penalty, especially for certain directional drilling applications.
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope of the invention is determined by the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
19315048 | Jun 2019 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2020/055853 | 6/22/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/261085 | 12/30/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5649604 | Fuller | Jul 1997 | A |
6164394 | Mensa-Wilmot | Dec 2000 | A |
7059431 | Simon | Jun 2006 | B2 |
7441612 | Durairajan | Oct 2008 | B2 |
9556683 | Simmons | Jan 2017 | B2 |
11008814 | Silveus, III | May 2021 | B2 |
20120111630 | Chen | May 2012 | A1 |
20120205163 | Azar | Aug 2012 | A1 |
20190017328 | Reese | Jan 2019 | A1 |
20200011137 | Maurstad | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
3 021 278 | May 2019 | CA |
3021278 | May 2019 | CA |
2317632 | Apr 1998 | GB |
Entry |
---|
SPE 10152, Huang et al, “The Positive Effects of Side Rake in Oilfield Bits Using Polycrystalline Diamond Compact Cutters” (1981). |
IADC/SPE 151406, Rajabov et al, “The Effects of Back Rake and Side Rake Angles on Mechanical Specific Energy of Single PDC Cutters with Selected Rocks at Varying Depth of Cuts and Confining Pressures” (2012). |
EPO Search Report and Opinion for Application No. 19 315 048.9 dated Dec. 4, 2019. |
GCC Examination Report for Application No. GC 2020-39983 dated Sep. 3, 2021. |
Response to Office Action dated May 22, 2019 for U.S. Appl. No. 16/161,661, filed Jul. 3, 2019. |
EPO Opinion for Application No. 19 315 048.9 dated Oct. 6, 2021. |
Number | Date | Country | |
---|---|---|---|
20220220809 A1 | Jul 2022 | US |