Wells may be drilled into subterranean formations to recover natural deposits of hydrocarbons and other desirable materials trapped in geological formations in the Earth's crust. Wells may be drilled by rotating a drill bit which may be located on a bottom hole assembly at a distal end of a drill string. While it may be desired for the drill bit to remain centered in the borehole, the drill bit often may become off-centered in the borehole. In addition, instead of being parallel to the longitudinal axis of the borehole, the drill bit is often angled in the borehole. As a result, the borehole is often irregular in shape with a size that can vary with depth. Even though these irregularities may be small, they may still be important when completing a well.
To determine the shape and size of the borehole, a logging tool may be used to provide a measurement of the borehole along its depth. A wide variety of different logging tools may be used, including caliper tools that can measure the shape and size mechanically. For example, the caliper tool may include articulating arms that push against the borehole walls, moving in and out as the caliper tool is withdrawn from the borehole. A potentiometer may be used to convert such movement into an electrical signal. Additional logging tools may measure the shape and size ultrasonically using acoustic signals. While such logging tools may be used to provide the caliper log with the borehole measurements as a function of depth, these tools are typically not used while drilling as accurate measurements may be difficult to achieve while drilling. However, measuring the shape and size of the borehole while drilling may be beneficial. If the driller has this information in real time, they would be able to make corrections immediately. Also, by knowing the shape of the hole at the instant of drilling, it may be possible to distinguish borehole shape due to the drill bit from a change in hole shape due to washouts.
These drawings illustrate certain aspects of some examples of the present disclosure, and should not be used to limit or define the disclosure.
This disclosure may generally relate to well operations. More particularly, embodiments may relate to systems and methods for providing drill bit position while drilling. Systems and method may include a gyroscope to measure angular velocity from which position of the drill bit as a function of time may be determined. With the position of the drill bit as a function of time known, additional information may also be determined, such as the shape of the borehole around the drill bit. By combining this information with depth information, a caliper log may be generated showing the shape of the borehole throughout drilling. Measurements from one or more additional sensors, such as accelerometers, magnetometers, and strain gauges, may be used to improve the accuracy of the gyroscope measurements.
Drilling system 100 may include a drilling platform 104 that supports a derrick 106 having a traveling block 108 for raising and lowering a drill string 110. A kelly 112 may support drill string 110 as drill string 110 may be lowered through a rotary table 114. Bit-position-while-drilling system 102 may include a drill bit 116 attached to the distal end of drill string 110 and may be driven either by a downhole motor (not shown) and/or via rotation of drill string 110. Without limitation, drill bit 116 may include any suitable type of drill bit 116, including, but not limited to, roller cone bits, PDC bits, natural diamond bits, any hole openers, reamers, coring bits, and the like. As drill bit 116 rotates, drill bit 116 may create a borehole 118 that penetrates various subterranean formations 120.
Drilling system 100 may further include a mud pump 122, one or more solids control systems 124, and a retention pit 126. Mud pump 122 representatively may include any conduits, pipelines, trucks, tubulars, and/or pipes used to fluidically convey drilling fluid 128 downhole, any pumps, compressors, or motors (e.g., topside or downhole) used to drive the drilling fluid 128 into motion, any valves or related joints used to regulate the pressure or flow rate of drilling fluid 128, any sensors (e.g., pressure, temperature, flow rate, etc.), gauges, and/or combinations thereof, and the like.
Mud pump 122 may circulate drilling fluid 128 through a feed conduit 175 and to kelly 112, which may convey drilling fluid 128 downhole through the interior of drill string 110 and through one or more orifices (not shown) in drill bit 116. Drilling fluid 128 may then be circulated back to surface 134 via a borehole annulus 130 defined between drill string 110 and the walls of borehole 118. At surface 134, the recirculated or spent drilling fluid 128 may exit borehole annulus 130 and may be conveyed to one or more solids control system 124 via an interconnecting flow line 132. One or more solids control systems 124 may include, but are not limited to, one or more of a shaker (e.g., shale shaker), a centrifuge, a hydrocyclone, a separator (including magnetic and electrical separators), a desilter, a desander, a separator, a filter (e.g., diatomaceous earth filters), a heat exchanger, and/or any fluid reclamation equipment. The one or more solids control systems 124 may further include one or more sensors, gauges, pumps, compressors, and the like used to store, monitor, regulate, and/or recondition the drilling fluid 128.
After passing through the one or more solids control systems 124, drilling fluid 128 may be deposited into a retention pit 126 (e.g., a mud pit). While illustrated as being arranged at the outlet of borehole 118 via borehole annulus 130, those skilled in the art will readily appreciate that the one or more solids controls system 124 may be arranged at any other location in drilling system 100 to facilitate its proper function, without departing from the scope of the disclosure. While
Bit-position-while-drilling system 102 may include drill bit 116 and a gyroscope unit 136. Gyroscope unit 136 may be coupled to drill bit 116. In particular, gyroscope unit 136 may be fixedly coupled to drill bit 116 so that there may be a known relationship between the location of gyroscope unit 136 and the geometry of drill bit 116. Gyroscope unit 136 may be a three-axis gyroscope to provide measurements of angular velocity about the x-, y-, and z-axes (e.g. x, y, and z axes shown on
In addition, bit-position-while-drilling system 102 may further include communication module 138. Communication module 138 may be configured to transmit information to surface 134. While not shown, communication module 138 may also transmit information to other portions of the bottom hole assembly (e.g., rotary steerable system) or a data collection system further up the bottomhole assembly. For example, communication module 138 may transmit gyroscope measurements and/or additional sensor measurements from bit-position-while-drilling system 102. In addition, where processing occurs at least partially downhole, communication module 138 may transmit the processed (and/or partially processed measurements) to surface 134. Information may be transmitted from communication module 138 to surface 134 using any suitable unidirectional or bidirectional wired or wireless telemetry system, including, but not limited to, an electrical conductor, a fiber optic cable, acoustic telemetry, electromagnetic telemetry, pressure pulse telemetry, combinations thereof or the like. Communication module 138 may include a variety of different devices to facilitate communication to surface, including, but not limited to, a powerline transceiver, a mud pulse valve, an optical transceiver, a piezoelectric actuator, a solenoid, a toroid, or an RF transceiver, among others.
The gyroscope measurements may be processed to bit position and caliper information, including, but not limited to, borehole 118 diameter and/or borehole 118 shape. It should be understood that there may be multiple diameters and corresponding angles at each depth in the well. For example, the caliper information may include a specific diameter when measurement over a certain angle at a depth. Measurements from the additional sensors may be used with the gyroscope measurements in determining bit position and caliper information for borehole 118. Bit-position-while-drilling system 102 may further include information handling system 140 configured for processing the measurements from gyroscope unit 136 and/or the additional sensors (where present). As illustrated, information handling system 140 may be disposed at surface 134. In examples, information handling system 140 may be disposed downhole. Any suitable technique may be used for transmitting signals from communication module 138 to information handling system 140. A communication link 150 (which may be wired, wireless, or combinations thereof, for example) may be provided that may transmit data from communication module 138 to information handling system 140. Without limitation, information handling system 140 may include any instrumentality or aggregate of instrumentalities operable to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, or other purposes. For example, information handling system 140 may be a personal computer, a network storage device, or any other suitable device and may vary in size, shape, performance, functionality, and price. Information handling system 140 may include random access memory (RAM), one or more processing resources (e.g. a microprocessor) such as a central processing unit 142 (CPU) or hardware or software control logic, ROM, and/or other types of nonvolatile memory. Additional components of information handling system 140 may include one or more of a monitor 144, an input device 146 (e.g., keyboard, mouse, etc.) as well as computer media 148 (e.g., optical disks, magnetic disks) that may store code representative of the methods described herein. Information handling system 140 may also include one or more buses (not shown) operable to transmit communications between the various hardware components.
Processor 406 may include any suitable processor or microprocessor, including, but not limited to, a digital signal processor. Processor 406 may receive measurements from gyroscope unit 136, as well as magnetometer unit 400, vibration sensor unit 402, and strain gauge unit 404, where available. Among other functions, processor 406 may collect data from the different sensors and store it, or apply any set of mathematical equations to determine motion of the device or statistical significance of the data. Processor 406 may be coupled to memory 414. The measurements received by processor 406 may be stored in memory 414. Memory 414 may include any suitable type of memory, including, but not limited to RAM memory and flash memory. Bit-position-while-drilling system 102 may further include power supply 416. Power supply 416 may supply power to components of bit-position-while-drilling system 102, including memory 414 and processor 406. Any suitable power supply 416 may be used, including, but not limited to, batteries, capacitors, turbines and wired or wireless power delivered from higher up in the bottom hole assembly.
Measurements from the sensors, including gyroscope unit 136, magnetometer unit 400, vibration sensor unit 402, and/or strain gauge unit 404 may be transmitted to information handling system 140. The measurements may be transmitted from bit-position-while-drilling system 102 in borehole 118 (e.g., shown on
In block 506, method 500 may include determining position of drill bit 116 (e.g., shown on
In block 508, method 500 may include determining shape of borehole 118 (e.g.,
Sensor subassembly 610 may be disposed in through bore 608. Sensor subassembly 610 may include insert 612. Insert 612 may be secured to inner wall 614 of through bore 608. Any suitable technique may be used for securing insert 612 to inner wall 614, including, but not limited to, mechanical fasteners and welding, among others. While insert 612 may have any suitable shape, in some implementations, insert 612 may be cylindrical in form. Sensor subassembly 610 may include housing 616. Housing 616 may also include sidewalls 632 and end cap 634 to at least partially define interior of housing 616. Seals 636 may be used to provide that housing 616 may be fluid tight. Housing 616 may include one or more compartments, including, but not limited to, sensor compartment 618 and battery compartment 620. Circuit board 622 may be disposed in sensor compartment 618. Any suitable type of circuit board 622 may be used, including, but not limited to, printed circuit boards, which may be rigid or flexible. Circuit board 622 may include electronics for implementation of caliper measurements. For example, circuit board 622 may include gyroscope unit 136, magnetometer unit 400, and/or vibration sensor unit 402. Circuit board 622 may also include processor 406. Battery 624 may be disposed in battery compartment 620. Any suitable type of battery 624 may be used, including, but not limited to, lithium thionyl chloride batteries, lithium manganese dioxide batteries, lithium-ion batteries, alkaline batteries, nickel-cadmium batteries, and nickel-metal hydride batteries, among others. As previously described, bit-position-while-drilling system 102 may also include strain gauge unit 404. As illustrated, strain gauge unit 404 may be disposed on bit body 602 to determine strain experienced by bit body 602 during drilling. Channel 626 may be provided in bit body 602 for wires from strain gauge unit 404 to couple with circuit board 622. Cover 628 may be disposed on channel 626, for example, to hold downhole pressure and prevent fluid from entering through bore 608 while seals 630 may provide additional sealing to prevent fluid ingress.
The systems and methods for providing caliper measurements while drilling may include any of the various features of the systems and methods disclosed herein, including one or more of the following statements.
[Claims Bank to be Added when Finalized.]
The preceding description provides various examples of the systems and methods of use disclosed herein which may contain different method steps and alternative combinations of components. It should be understood that, although individual examples may be discussed herein, the present disclosure covers all combinations of the disclosed examples, including, without limitation, the different component combinations, method step combinations, and properties of the system. It should be understood that the compositions and methods are described in terms of “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps. Moreover, the indefinite articles “a” or “an,” as used in the claims, are defined herein to mean one or more than one of the element that it introduces.
For the sake of brevity, only certain ranges are explicitly disclosed herein. However, ranges from any lower limit may be combined with any upper limit to recite a range not explicitly recited, as well as, ranges from any lower limit may be combined with any other lower limit to recite a range not explicitly recited, in the same way, ranges from any upper limit may be combined with any other upper limit to recite a range not explicitly recited. Additionally, whenever a numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range are specifically disclosed. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values even if not explicitly recited. Thus, every point or individual value may serve as its own lower or upper limit combined with any other point or individual value or any other lower or upper limit, to recite a range not explicitly recited.
Therefore, the present examples are well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular examples disclosed above are illustrative only, and may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Although individual examples are discussed, the disclosure covers all combinations of all of the examples. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee. It is therefore evident that the particular illustrative examples disclosed above may be altered or modified and all such variations are considered within the scope and spirit of those examples. If there is any conflict in the usages of a word or term in this specification and one or more patent(s) or other documents that may be incorporated herein by reference, the definitions that are consistent with this specification should be adopted.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/029690 | 4/27/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/209307 | 10/31/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5864058 | Chen | Jan 1999 | A |
6467341 | Boucher et al. | Oct 2002 | B1 |
6719069 | Alft et al. | Apr 2004 | B2 |
6895678 | Ash | May 2005 | B2 |
9062531 | Jones | Jun 2015 | B2 |
9410377 | Jain et al. | Aug 2016 | B2 |
9483607 | Sugiura | Nov 2016 | B2 |
9567844 | Mauldin et al. | Feb 2017 | B2 |
20030111268 | Alft | Jun 2003 | A1 |
20070114068 | Hall | May 2007 | A1 |
20130248247 | Sugiura | Sep 2013 | A1 |
20160123137 | Liu et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
1184539 | Feb 2002 | EP |
Entry |
---|
ISRWO International Search Report and Written Opinion for PCT/US2018/029690 dated Dec. 3, 2018. |
Number | Date | Country | |
---|---|---|---|
20210396128 A1 | Dec 2021 | US |