The present invention relates to the field of downhole oil, gas, and/or geothermal exploration and more particularly to the field of drill bits for aiding such exploration and drilling.
Drill bits use rotary energy provided by the tool string to cut through downhole formations, thus advancing the tool string further into the ground. To use drilling time effectively, sensors have been placed in the drill string, usually in the tool string, to assist the operator in making drilling decisions. In the patent prior art, sensors have been disclosed in drill bits.
For example, U.S. Pat. No. 6,150,822 to Hong, et al discloses a microwave frequency range sensor (antenna or wave guide) disposed in the face of a diamond or PDC drill bit configured to minimize invasion of drilling fluid into the formation ahead of the bit. The sensor is connected to an instrument disposed in a sub interposed in the drill stem for generating and measuring the alteration of microwave energy.
U.S. Pat. No. 6,814,162 to Moran, et al discloses a drill bit, comprising a bit body, a sensor disposed in the bit body, a single journal removably mounted to the bit body, and a roller cone rotatably mounted to the single journal. The drill bit may also comprise a short-hop telemetry transmission device adapted to transmit data from the sensor to a measurement-while-drilling device located above the drill bit on the drill string.
U.S. Pat. No. 6,913,095 to Krueger discloses a closed-loop drilling system utilizes a bottom hole assembly (“BHA”) having a steering assembly having a rotating member and a non-rotating sleeve disposed thereon. The sleeve has a plurality of expandable force application members that engage a borehole wall. A power source and associated electronics for energizing the force application members are located outside of the non-rotating sleeve.
In one aspect of the invention a downhole drill bit with a body intermediate a shank and a working surface. Extending from the work surface is a wear resistant electric transmitter electrically isolated from the drill bit body. A wear resistant electrically conductive receiver, also electrically isolated from the bit body, may be connected to a tool string component. The working surface may also have at least two wear resistant electrodes located intermediate the transmitter and receiver that are adapted to measure an electric potential in the formation.
The drill bit may also be in communication with a downhole telemetry system incorporated in a drill string to which the drill bit is attached. At least a portion of each electrode may be electrically isolated from the body portion and comprise an electrically conductive polycrystalline diamond. The electrodes may be incorporated into penetration limiters or cutting elements so that they may be in constant contact with the formation.
At least one wear resistant electrode intermediate the transmitter and receiver may be a focusing electrode that may produce a bucking current. This focusing electrode may be incorporated into penetration limiters, cutting elements, or combinations thereof. Intermediate the transmitter and receiver may also be a monitor electrode incorporated into a penetration limiter, cutting element, or combinations thereof. The transmitter may have an asymmetric distal end for steering the drill bit. The transmitter may also be in electrical communication with a battery, a telemetry system, a power generator, or combinations thereof In order to electrically isolate the electrodes, the transmitter, and/or the receivers from each other and from the tool string they may be encased within a dielectric material, which may comprise a ceramic, a rubber, a plastic, a metal a gas or combinations thereof.
The tool string component may also be a stabilizer or a reamer that contacts the wall in order to protect the bit from uneven wear. The drill bit may be a shear bit or a percussion bit. The percussion bit may range in size and surface shape such as a conical surface, a flat surface, a rounded surface, a domed surface, or combinations thereof.
In some embodiments, the electrically isolated transmitter may be incorporated into a cutting element or a penetration limiter. In some embodiments, the transmitter, the receiver, or electrodes may be spring loaded to help ensure contact with the formation.
The transmitter 103 may be substantially coaxial with an axis of rotation and extends within the conical region. A plurality of nozzles 302 are fitted into recesses formed in the working face. Each nozzle 302 may be oriented such that a jet of drilling mud ejected from the nozzles 302 engages the formation and/or cleans the junk slots. The nozzles may be positioned within the junk slots. In some embodiments, the nozzles may be part of the jack element.
The transmitter 103 may be made of a cemented metal carbide. In some embodiments, to electrically isolate the transmitter 103, a thin portion of metal may be leached out of the surface of the transmitter 103 where it contacts the bit body. In other embodiments, a high temperature plastic, paint or other coating or material which is electrically insulating may be used to keep the transmitter from shorting to the bit body. Other types of material that may be used to electrically isolate the transmitter or the electrodes may be transformation toughened zirconia or zirconium toughened alumina. The transmitter 103 may also use a physical vapor deposited coating to become electrically isolated.
Now referring to
The electric motor 601 may be in electrical communication with electronics 1000, as in the embodiment of
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.
This Patent Application is a continuation-in-part of U.S. patent application Ser. No. 11/750,700 filed on May 18, 2007 and entitled Jack Element with a Stop-off. U.S. patent application Ser. No. 11/750,700 a continuation-in-part of U.S. patent application Ser. No. 11/737,034 filed on Apr. 18, 2007 and entitled Rotary Valve for Steering a Drill Bit. U.S. patent application Ser. No. 11/737,034 is a continuation-in-part of U.S. patent application Ser. No. 11/686,638 filed on Mar. 15, 2007 and entitled Rotary Valve for a Jack Hammer. U.S. patent application Ser. No. 11/686,638 is a continuation-in-part of U.S. patent application Ser. No. 11/680,997 filed on Mar. 1, 2007 and entitled Bi-center Drill Bit. U.S. patent application Ser. No. 11/680,997 is a continuation-in-part of U.S. patent application Ser. No. 11/673,872 filed on Feb. 12, 2007 and entitled Jack Element in Communication with an Electric Motor and/or generator. U.S. patent application Ser. No. 11/673,872 is a continuation-in-part of U.S. patent application Ser. No. 11/611,310 filed on Dec. 15, 2006 and which is entitled System for Steering a Drill String. This patent application is also a continuation in-part of U.S. patent application Ser. No. 11/278,935 filed on Apr. 6, 2006 and which is entitled Drill Bit Assembly with a Probe. U.S. patent application Ser. No. 11/278,935 is a continuation-in-part of U.S. patent application Ser. No. 11/277,294 which filed on Mar. 24, 2006 and entitled Drill Bit Assembly with a Logging Device. U.S. patent application Ser. No. 11/277,294 is a continuation-in-part of U.S. patent application Ser. No. 11/277,380 also filed on Mar. 24, 2006 and entitled A Drill Bit Assembly Adapted to Provide Power Downhole. U.S. patent application Ser. No. 11/277,380 is a continuation-in-part of U.S. patent application Ser. No. 11/306,976 which was filed on Jan. 18, 2006 and entitled “Drill Bit Assembly for Directional Drilling.” U.S. patent application Ser. No. 11/306,976 is a continuation-in-part of Ser. No. 11/306,307 filed on Dec. 22, 2005, entitled Drill Bit Assembly with an Indenting Member. U.S. patent application Ser. No. 11/306,307 is a continuation-in-part of U.S. patent application Ser. No. 11/306,022 filed on Dec. 14, 2005, entitled Hydraulic Drill Bit Assembly. U.S. patent application Ser. No. 11/306,022 is a continuation-in-part of U.S. patent application Ser. No. 11/164,391 filed on Nov. 21, 2005, which is entitled Drill Bit Assembly. All of these applications are herein incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11750700 | May 2007 | US |
Child | 11759992 | Jun 2007 | US |
Parent | 11737034 | Apr 2007 | US |
Child | 11750700 | May 2007 | US |
Parent | 11686638 | Mar 2007 | US |
Child | 11737034 | Apr 2007 | US |
Parent | 11680997 | Mar 2007 | US |
Child | 11686638 | Mar 2007 | US |
Parent | 11673872 | Feb 2007 | US |
Child | 11680997 | Mar 2007 | US |
Parent | 11611310 | Dec 2006 | US |
Child | 11673872 | Feb 2007 | US |
Parent | 11278935 | Apr 2006 | US |
Child | 11759992 | Jun 2007 | US |
Parent | 11277294 | Mar 2006 | US |
Child | 11278935 | Apr 2006 | US |