The present invention relates in general to horizontal directional drilling (“HDD”) drill bits and in particular to an offset rock bit.
The invention is directed to a drilling bit for use in directional drilling. The bit comprises a connector section having a first axis of rotation, a front nose section, and a bit body. The front nose section has a frontwardly facing surface. The bit body slopes from the connector section to the front nose section. The front nose section and the bit body comprise a second axis of rotation about which the front nose section and bit body are rotated. The first axis of rotation and the second axis of rotation are angularly offset at an offset angle of between four degrees and ten degrees.
The present invention is also directed to a horizontal directional drilling system. The system comprises a drive machine, a drill string, and a downhole tool assembly. The drill string is connected to the drive machine and operable in response to rotation and thrust forces from the drive machine. The downhole tool assembly is connected to a downhole end of the drill string. The downhole tool assembly comprises a beacon assembly and a drill bit. The drill bit comprises a connector section, a front nose section and a bit body. The connector section has a first axis of rotation. The front nose section has a frontwardly facing surface. The bit body slopes from the connector section to the front nose section. The front nose section and the bit body comprise a second axis of rotation about which the front nose section and bit body are rotated. The first axis of rotation and the second axis of rotation are angularly offset at an offset angle of between four degrees and ten degrees.
Turning now to the drawings in general and
Referring still to
The drill string 20 is operatively connected to the rotary drive machine 24 at one end and the downhole tool 16 at the other end. In the present invention the drill string 20 may comprise a series of pipe segments that transmit torque and thrust to the drill bit 18.
The HDD system of
The need to effectively and accurately steer the downhole tool 16 has resulted in the development of many different “steerable” drill bits. One such steerable drill bit is an angled or slant faced drill bit. In order to steer the drill bit, the operator positions the bit with the angled face pointed in the direction of the desired turn and begins to rock the drill string and downhole tool through less than 360 degrees of rotation to cut away material from a face of the borehole to cut a relief in the side of the borehole in which the operator wants to steer. The downhole tool 16 is also pushed into the relief until it is large enough to change the direction of the downhole tool and the borehole. This steering method may be used to steer the tool in any direction. To drill in a straight line, the steerable drill bit 18 is rotated about the full 360 degrees, usually clockwise, while it is thrust forward by the rotary drive machine 24.
Turning now to
Continuing with
The beacon 42 may comprise an electromagnetic transmitting antenna (not shown) and a set of orientation sensors (not shown) used to detect the orientation of the downhole tool assembly 16. The beacon may likewise include a temperature sensor and a power level sensor to measure remaining battery life. Information from the various sensors may be embedded onto the signal transmitted by the antenna to communicate such information to the above-ground receiver 30. The receiver 30 is capable of decoding the signal to receive the operational and orientation information contained thereon and capable of measuring the strength of the signal to determine the distance between the receiver and the downhole tool 16.
Referring still to
The connector section 52, as discussed above, may comprise a threaded portion 38 for connecting the drill bit 18 to the housing 32. The connector section 52 may also comprises a fluid path 66. The fluid path 66 provides a pathway for drilling fluid to pass through the drill hit and out of fluid ejection ports (not shown) spaced about the surface of the bit 18.
As shown in
The bit body 56 may comprise a steering face 68 having a rise over run ratio of between 2:1 and 4:1. A preferable steering face will have a rise over run ratio of 3:1. The steering face 68 engages the front face of the borehole and deflects the nose section 54 in a desired steering direction. The offset angle between the first axis of rotation and the second axis of rotation raises the steering face 68 into a position that allows cutting teeth 70 to engage the face of the borehole in the desired steering direction in a more aggressive manner than traditional directional drill bits. This feature provides more immediate control of the steer as well as a sharper turn radius.
Turning now to
The bit body 56 is shown having angled steering face 68, and a deflection surface 72. The deflection surface 72 is formed from a resilient material and is generally welded about a portion of the circumference of the bit body 56. The deflection surface 72 provides a means for deflecting the drill bit 18 in a direction opposite the side of the bit body 56 on which the deflection surface is disposed. The deflection surface may comprise hardened steel or carbide teeth used to crush drilling spoils created by the cutting teeth 70 as the drilling spoils pass from the nose section 54 up the borehole 12 (
The nose section 54 is connected to the front end of the bit body 56 and has frontwardly facing surface 60. A plurality of spaced rock cutting teeth 70 are mounted on the frontwardly facing surface 60 of the nose section 54. The rock cutting teeth 70 generally comprise a carbide tip and are mounted in the nose section 54 to rotate relative to the drill bit 18 about an elongate axis 71 of the cutting tooth. The nose section 54 also may comprise a front brow 74 at a position opposite the steering face 68. The brow 74 extends radially outward from the nose section 54. The frontwardly facing surface 60 comprises an arcuate front face of the brow 74.
The offset angle of the drill bit 18 of the present invention is illustrated in
As used herein the “rise” of 3.07 inches is measured from the outermost diameter of the brow 74 (see reference numeral 76) to the first axis of rotation 58 wherein it intersects the plane of the steering face 68 (see reference numeral 78). The “run,” as used herein is defined by the distance from the frontwardly facing surface 60 to intersection point 78.
The drill bit 18 of the present invention is advantageous because it functions to increase the cutting diameter of the tool while maintaining a smaller circumference. For example, a typical 3.5 inch downhole tool cuts a 5.3 inch diameter borehole. Because the cutting teeth 70 are moved further away from the first axis of rotation 58 in the drill bit 18 of the present invention, a 4.5 inch cutting face is created that is capable of cutting a 6.4 inch borehole. An increased diameter borehole is advantageous for reducing the difficulty of backreaming through hard soil or rock.
Various modifications can be made in the design and operation of the present invention without departing from the spirit thereof. Thus, while the principal preferred construction and modes of operation of the invention have been explained in what is now considered to represent its best embodiments, which have been illustrated and described, it should be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically illustrated and described.
This application claims priority of U.S. Provisional Patent Application No. 61/332,633, filed May 7, 2010, the contents of which are incorporated fully herein by reference.
Number | Date | Country | |
---|---|---|---|
61332633 | May 2010 | US |