In the hydrocarbon drilling industry, rotary drill bits that drill into subterranean formations form cuttings that are carried away with drilling fluid that is pumped through the drill bit. Junk slots are provided in the drill bit to permit passage therethrough of the drilling fluid and the cuttings carried therewith. Cuttings, however, can be of a size that they become lodged in the junk slots thereby blocking the junk slots and detrimentally affecting a rate of penetration of the drilling operation. Systems and methods to lessen occurrences of these conditions are well received in the art.
Disclosed herein is a downhole drill bit. The drill bit includes, a body, a plurality of cutters attached to the body, and at least one splitter that is integrally formed in the body is in operable communication with at least one of the plurality of cutters such that the splitter bifurcates cuttings cut by the at least one cutter.
Further disclosed herein is a method of making a downhole bit with integral splitters. The method includes, milling a body of the downhole bit, and removing material from the body leaving at least one splitter protruding from at least one surface of the body.
Further disclosed herein is a method of making a drill bit for drilling subterranean formations. The method includes, forming a bit mold defining the drill bit to include at least one recess defining at least one splitter, and filling the bit mold with at least one material.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
Referring to
The splitter 18 is integrally formed as part of the body 14 as will be described in greater detail below. Making the splitter 18 integral with the body 14 avoids some drawbacks associated with alternate methods of attaching splitters to bodies. For example, welding splitters to bodies form heat-affected zones in both of the parent materials of the splitter and the body that can negatively impact the structural characteristics of the parent materials such as hardness and strength as well as locally changing the parent material structure to one more prone to erosion, abrasion and corrosion. Welding also has inherent variability in the process itself due to all the variables that must be controlled as well as having limitations in a depth-of-penetration beyond the surfaces where the weld is performed. Soldering or brazing also has drawbacks, which include, variation in bond integrity between each of the parent materials and the third brazing material introduced, and limitations in temperatures during use due to the lower melting temperature of the third brazing material. Additionally, variability in the process parameters such as the rate of temperature change, surface preparation and fit of the bonding surfaces and the potential for contamination and gas pockets within the brazed joint, all can negatively effect the integrity of the bond. Strictly mechanical attachments can have limitations as well, including, displacement of parent material for routing of the fasteners and potentially inherent areas of stress concentration due to the geometric requirements of the mechanical attachments themselves. Making the splitter 18 integrally with the body 14 as disclosed herein avoids these concerns.
Referring to
Referring to
Referring to
Referring to
It should be noted that embodiments might include filling the recesses 318 with a hardenable material negating the need to heat the material for sintering. Still other embodiments may include filling the recesses 318 with a first material, while filling the balance of the bit mold 300 with a second material. Doing so can allow the splitters 318 to have different material properties than the body 114 such as enhanced strength and wear resistance properties.
Alternately, the drill bit 110 can be directly machined with, for example, a multiple axis automated milling machine. The milling machine can remove material from the body 114 and leave the splitter 118 protruding therefrom. In so doing, avoiding secondary operations to attach the splitter 118 to the body 114 and the potentially detrimental effects associated with such secondary operations as elaborated on above.
While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.