The present invention relates to the general field of drilling, and is particularly concerned with a drill bit.
In the geological exploration, mining and construction industries, among others, drill bits 10, an example of which is shown in
By design, there are only limited variations in the parameters defining the drilling segments 18, such as distance between drilling segments 18, or width of the slots 16, and the number of drilling segments 18. Also, typically, the drilling segments 18 are relatively large. These limitations limit the heat dissipation and debris clearance characteristics of the drill bit 10.
Against this background, there exists a need in the industry to provide an improved drill bit. An object of the present invention is therefore to provide an improved drill bit.
In a broad aspect, the invention provides a drill bit, the drill bit comprising: a substantially tubular bit body defining a body proximal end and a substantially longitudinally opposed body distal end; a crown extending from the bit body at the body distal end, the crown having a generally annular configuration defining crown inner and outer diameters; the crown including a plurality of segments provided between the crown inner and outer diameters, at least one of the segments extending only partially radially across the crown between the crown inner and outer diameters.
Advantageously, the proposed drill bit allows for more variations in mechanical and hydrodynamic properties of the crown than conventional drill bits, which allows adapting the drill bit to different drilling conditions. In some embodiments, this allows for an improvement in cooling and debris evacuation characteristics of the drill bits when compared to conventional drill bits.
Also, the proposed drill bit is relatively easily manufacturable using known methods and materials.
In some embodiments of the invention, each of the segments extends only partially radially across the crown between the crown inner and outer diameters.
In some embodiments of the invention, the segments are divided in inner segments and outer segments, the outer segments all extending radially outwardly further than the inner segments and the inner segments all extending radially inwardly further than the outer segments, the segments alternating circumferentially between outer segments and inner segments. In a variant, the inner and outer segments overlap circumferentially. In another variant, the inner and outer segments are circumferentially spaced apart from each other so as to have no circumferential overlap therebetween.
In some embodiments of the invention, all virtual circles contained in and concentric with the crown intersect at least one of the segments.
In some embodiments of the invention, the crown defines a plurality of waterways devoid of the segments, each waterway extending between the crown inner and outer diameters. For example, the waterways are substantially equidistantly spaced apart from one another circumferentially around the crown.
In some embodiments of the invention, the segments define segment groups circumferentially spaced apart from each other by the waterways, each segment group including at least two of the segments.
In some embodiments of the invention, each segment of each segment group is closer to at least one other segment from the same segment group than to all of the segments outside of the same segment group.
In some embodiments of the invention, at least two segments from at least one of the segment groups contact each other.
In some embodiments of the invention, the segment groups each extend from the crown inner diameter to the crown outer diameter.
In some embodiments of the invention, the bit body defines a plurality of segment receiving recesses extending thereinto at the body distal end and the segments each define a segment attachment portion inserted in one of the segment receiving recesses and a segment abrading portion provided outside of the segment receiving recesses. For example, the segment attachment portions and the segment receiving recesses are threaded and the segment attachment portions are screwed in the segment receiving recesses. In other examples, the segments are glued, soldered or brazed to the bit body, sometimes in combination with being screwed thereto.
In some embodiments of the invention, at least some of the segments have a substantially constant transversal configuration longitudinally therealong.
In some embodiments of the invention, at least one of the segments has at least a portion thereof tapering in a direction leading towards the bit body.
In some embodiments of the invention, at least one of the segments has at least a portion thereof tapering in a direction leading away from the bit body.
In some embodiments of the invention, at least one of the segments has a substantially circular transversal cross-sectional configuration.
In some embodiments of the invention, at least one of the segments has a substantially triangular transversal cross-sectional configuration.
In some embodiments of the invention, at least one of the segments has a substantially trapezoidal transversal cross-sectional configuration.
In some embodiments of the invention, the crown protrudes radially inwardly and outwardly relative to the bit body.
In some embodiments of the invention, the segments each include abrasive particles contained in a metal matrix. For example, the abrasive particles include diamond particles.
In some embodiments of the invention, the drill bit defines a drill string attachment substantially adjacent the body proximal end, the drill string attachment being configured and sized for attaching the drill bit to a drill string. For example, the drill string attachment includes threads for screwing the drill bit to the drill string.
In some embodiments of the invention, the segments are all in a spaced apart relationship relative to each other.
In another broad aspect, the invention provides a drill bit usable with a fluid, the drill bit comprising: a bit body, the bit body defining a body proximal end and a substantially longitudinally opposed body distal end, the bit body defining a body passageway extending substantially longitudinally therethrough for receiving the fluid and conveying the fluid through the bit body; a substantially annular crown extending substantially longitudinally from the bit body, the crown defining a crown distal end and a substantially longitudinally opposed crown proximal end, the crown extending from the bit body with the crown proximal end located substantially adjacent to the body distal end, the crown defining a crown passageway extending substantially longitudinally therethrough, the crown passageway being in fluid communication with the body passageway for receiving the fluid from the body passageway, the crown extending between a crown inner diameter and a crown outer diameter; the crown including a plurality of segments, each of the segments extending only partially circumferentially and radially across the crown.
All embodiments and examples mentioned hereinabove also apply to the drill bit described in the preceding paragraph.
Other objects, advantages and features of the present invention will become more apparent upon reading of the following non-restrictive description of preferred embodiments thereof, given by way of example only with reference to the accompanying drawings.
In the appended drawings:
Referring to
For the purpose of this document, the terminology proximal and distal refers to a distance from an operator located on the surface who operates the drill bit 26 down a bore hole. Therefore, distal elements are provided lower in the bore hole, or further away from the operator, than proximal elements. This terminology is used to facilitate the description of the drill bit 26 and should not be used to restrict the scope of the present invention.
The present document also uses directional terminology such as “longitudinal”, “radial”, “circumferential” and their adverbs. This terminology is relative to the general cylindrical configuration of the drill bit 26. Also, the terminology “transversal” is used to denote a plane perpendicular to the general longitudinal direction.
Also, the terminology “substantially” is used to denote variations in the thus qualified terms that have no significant effect on the principle of operation of the drill bit 26. These variations may be minor variations in design or variations due to mechanical tolerances in manufacturing and use of the drill bit 26. These variations are to be seen with the eye of the reader skilled in the art.
The bit body 30 defines a body proximal end 32 and a substantially longitudinally opposed body distal end 34. The bit body 30 also defined a body distal surface 31 at the body distal end. For example, the body distal surface 31 is substantially annular and generally transversal. The bit body 30 further defines a body passageway 36 extending substantially longitudinally therethrough for receiving the fluid and conveying the fluid through the bit body 30. Typically, the drill bit 26 defines a drill string attachment 25 (only partially shown in
The crown 38 extends from the bit body 26 at the body distal end 34. The crown 38 has a generally annular configuration defining crown inner and outer diameters 48 and 50 (as better seen in
The segments 46 are elements of the crown 38 that may or may not contact other segments 46, but that are physically distinct entities which do not extend integrally from each other. The segments 46 form the portion of the drill bit 10 that removes the rock or other materials from the bore to be created with the drill bit 10. In some embodiments of the invention, all the segments 46 extend either to the crown inner diameter 48 or to the crown outer diameter 50. In these embodiments, all the segments 46, in addition to cutting or eroding the material in which the drill bit 10 is used, also maintain either the diameter of the bore hole that is created or the diameter of the central portion of the material that is received in the drill bit 10. This central portion often forms a core that is retrieved for further analysis. Also, in some embodiments of the invention, all the segments 46 are non-contacting and separated from each other by a gap. In other words, in these embodiments, the segments 46 are all in a spaced apart relationship relative to each other.
Returning to
In opposition to some drill bits that include cutting disks or inserts, in some embodiments of the invention, the segments 46 are configured and sized such that every circumference of the crown 38 between the crown inner and outer diameters 48 and 50 intersect at least one segment 46. In other words, all virtual circles contained in and concentric with the crown 38 intersect at least one of the segments 46. Also, in some embodiments of the invention, the segments 46 are used both to create a longitudinally constant diameter of the bore hole and of the core and to remove rock and other ground material from the bottom of the bore hole. To that effect, the crown 38 protrudes radially inwardly and outwardly relative to the bit body 30.
Typically, the crown 38 defines a plurality of waterways 47 (better seen in
Referring to
In some embodiments of the invention, some or all of the segments 46 from each of the segment groups 52 contact at least one other segment 46 from the same segment group. However, in other embodiments, the segments 46 are all spaced apart from each other in the segment group 52.
In some embodiments of the invention, each segment group 52 extends the entire radial extension of the crown 38. In other words, in these embodiments, the segment groups 52 each extend from the crown inner diameter 48 to the crown outer diameter 50 so that in each segment group 52, there is at least one segment 46 that reaches the crown inner diameter 48 and at least another segment 46 that reaches the crown outer diameter 50. Within each segment group 52, there is an intra-group gap 54 between the segments 46. Inter-group gaps 56 extend between the segment groups 52, the inter-group gaps defining the waterways 47.
The bit body 30 is typically made out of a metal, such as steel, while the segments 46 each include abrasive particles contained in a metal matrix. For example, the abrasive particles include diamond particles and the segments 46 include diamond-encrusted matrices of conventional composition that are relatively abrasive, robust and wear resistant.
In some embodiments of the invention, each segment 46 is individually selectively attachable to the bit body 30. This attachment can be made in the field, just prior to use of the drill bit 26, or during the manufacturing process. This provides great flexibility in having a drill bit 26 suitable for a particular drilling situation. For example, referring to
In a variant, as seen for example in
Various shapes and configurations are possible for the segments 46 and segment groups 52. For example, as seen in
In some embodiments of the invention, as seen in
Also, in some embodiments, as seen in
The segments 46C, 46CC, 46D and 46DD alternate circumferentially between outer segments 46CC and 46DD and inner segments 46C and 46D. Typically, the outer segments 46CC and 46DD extend from the crown outer diameter 50 towards the crown inner diameter 48 without reaching the latter and the inner segments 46C and 46D extend from the crown inner diameter 48 towards the crown outer diameter 50 without reaching the latter. As seen in
In some embodiments of the invention, the segments 46 do not all have identical transversal cross-sectional configurations. In yet other embodiments of the invention, the segments 46 have transversal cross-sectional configurations that vary longitudinally therealong. Typically, but not necessarily, the segments 46 have a larger longitudinal dimensions than transversal dimensions.
Although the present invention has been described hereinabove by way of preferred embodiments thereof, it can be modified, without departing from the spirit and nature of the subject invention as defined in the appended claims.
This application claims priority from U.S. provisional patent application Ser. No. 61/737,946 filed on Dec. 17, 2012, the contents of which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2013/001048 | 12/16/2013 | WO | 00 |